Advertisement

Journal of High Energy Physics

, 2012:128 | Cite as

Explicit and spontaneous breaking of SU(3) into its finite subgroups

  • Alexander MerleEmail author
  • Roman Zwicky
Article

Abstract

We investigate the breaking of SU(3) into its subgroups from the viewpoints of explicit and spontaneous breaking. A one-to-one link between these two approaches is given by the complex spherical harmonics, which form a complete set of SU(3)-representation functions. An invariant of degrees p and q in complex conjugate variables corresponds to a singlet, or vacuum expectation value, in a (p, q)-representation of SU(3). We review the formalism of the Molien function, which contains information on primary and secondary invariants. Generalizations of the Molien function to the tensor generating functions are discussed. The latter allows all branching rules to be deduced. We have computed all primary and secondary invariants for all proper finite subgroups of order smaller than 512, for the entire series of groups Δ(3n2), Δ(6n2), and for all crystallographic groups. Examples of sufficient conditions for breaking into a subgroup are worked out for the entire Tn[a]-, Δ(3n2)-, Δ(6n2)-series and for all crystallographic groups Σ(X). The corresponding invariants provide an alternative definition of these groups. A Mathematica package, SUtree, is provided which allows the extraction of the invariants, Molien and generating functions, syzygies, VEVs, branching rules, character tables, matrix (p, q)SU(3)-representations, Kronecker products, etc. for the groups discussed above.

Keywords

Discrete and Finite Symmetries Spontaneous Symmetry Breaking Beyond Standard Model 

References

  1. [1]
    P. Harrison, D. Perkins and W. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [INSPIRE].ADSGoogle Scholar
  2. [2]
    F. Caravaglios and S. Morisi, Neutrino masses and mixings with an S3 family permutation symmetry, hep-ph/0503234 [INSPIRE].
  3. [3]
    G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions, Nucl. Phys. B 720 (2005) 64 [hep-ph/0504165] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    W. Grimus and L. Lavoura, A model realizing the Harrison-Perkins-Scott lepton mixing matrix, JHEP 01 (2006) 018 [hep-ph/0509239] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing, A4 and the modular symmetry, Nucl. Phys. B 741 (2006) 215 [hep-ph/0512103] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    H.K. Dreiner, C. Luhn and M. Thormeier, What is the discrete gauge symmetry of the MSSM?, Phys. Rev. D 73 (2006) 075007 [hep-ph/0512163] [INSPIRE].ADSGoogle Scholar
  7. [7]
    I. de Medeiros Varzielas, S. King and G. Ross, Tri-bimaximal neutrino mixing from discrete subgroups of SU(3) and SO(3) family symmetry, Phys. Lett. B 644 (2007) 153 [hep-ph/0512313] [INSPIRE].ADSGoogle Scholar
  8. [8]
    C. Hagedorn, M. Lindner and R. Mohapatra, S4 flavor symmetry and fermion masses: towards a grand unified theory of flavor, JHEP 06 (2006) 042 [hep-ph/0602244] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    S.F. King and M. Malinsky, A4 family symmetry and quark-lepton unification, Phys. Lett. B 645 (2007)351 [hep-ph/0610250] [INSPIRE].ADSGoogle Scholar
  10. [10]
    S. Morisi, M. Picariello and E. Torrente-Lujan, Model for fermion masses and lepton mixing in SO(10) × A4, Phys. Rev. D 75 (2007) 075015 [hep-ph/0702034] [INSPIRE].ADSGoogle Scholar
  11. [11]
    C. Luhn, S. Nasri and P. Ramond, Tri-bimaximal neutrino mixing and the family symmetry semidirect product of Z(7) and Z(3), Phys. Lett. B 652 (2007) 27 [arXiv:0706.2341] [INSPIRE].ADSGoogle Scholar
  12. [12]
    F. Bazzocchi, S. Kaneko and S. Morisi, A SUSY A4 model for fermion masses and mixings, JHEP 03 (2008) 063 [arXiv:0707.3032] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    G. Altarelli, F. Feruglio and C. Hagedorn, A SUSY SU(5) grand unified model of tri-bimaximal mixing from A4, JHEP 03 (2008) 052 [arXiv:0802.0090] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Lepton flavour violation in models with A4 flavour symmetry, Nucl. Phys. B 809 (2009) 218 [arXiv:0807.3160] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    F. Bazzocchi, M. Frigerio and S. Morisi, Fermion masses and mixing in models with SO(10) × A4 symmetry, Phys. Rev. D 78 (2008) 116018 [arXiv:0809.3573] [INSPIRE].ADSGoogle Scholar
  16. [16]
    F. Bazzocchi and S. Morisi, S4 as a natural flavor symmetry for lepton mixing, Phys. Rev. D 80 (2009) 096005 [arXiv:0811.0345] [INSPIRE].ADSGoogle Scholar
  17. [17]
    F. Bazzocchi, L. Merlo and S. Morisi, Fermion masses and mixings in a S(4)-based model, Nucl. Phys. B 816 (2009) 204 [arXiv:0901.2086] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    F. Bazzocchi, L. Merlo and S. Morisi, Phenomenological consequences of see-saw in S4 based models, Phys. Rev. D 80 (2009) 053003 [arXiv:0902.2849] [INSPIRE].ADSGoogle Scholar
  19. [19]
    M.-C. Chen and S.F. King, A4 see-saw models and form dominance, JHEP 06 (2009) 072 [arXiv:0903.0125] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    G. Altarelli, F. Feruglio and L. Merlo, Revisiting bimaximal neutrino mixing in a model with S4 discrete symmetry, JHEP 05 (2009) 020 [arXiv:0903.1940] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    G. Altarelli and D. Meloni, A Simplest A4 Model for Tri-Bimaximal Neutrino Mixing, J. Phys. G 36 (2009) 085005 [arXiv:0905.0620] [INSPIRE].ADSGoogle Scholar
  22. [22]
    F. Feruglio, C. Hagedorn and L. Merlo, Vacuum alignment in SUSY A4 models, JHEP 03 (2010)084 [arXiv:0910.4058] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S.F. King and C. Luhn, A Supersymmetric Grand Unified Theory of Flavour with PSL2(7) × SO(10), Nucl. Phys. B 832 (2010) 414 [arXiv:0912.1344] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    C. Hagedorn, S.F. King and C. Luhn, A SUSY GUT of Flavour with S4 × SU(5) to NLO, JHEP 06 (2010) 048 [arXiv:1003.4249] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    C. Hagedorn and M. Serone, Leptons in Holographic Composite Higgs Models with Non-Abelian Discrete Symmetries, JHEP 10 (2011) 083 [arXiv:1106.4021] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    R.D.A. Toorop, F. Feruglio and C. Hagedorn, Discrete Flavour Symmetries in Light of T2K, Phys. Lett. B 703 (2011) 447 [arXiv:1107.3486] [INSPIRE].ADSGoogle Scholar
  27. [27]
    S.F. King and C. Luhn, Trimaximal neutrino mixing from vacuum alignment in A4 and S4 models, JHEP 09 (2011) 042 [arXiv:1107.5332] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    W. Buchmüller and J. Schmidt, Higgs versus Matter in the Heterotic Landscape, Nucl. Phys. B 807 (2009) 265 [arXiv:0807.1046] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    T. Kobayashi, H.P. Nilles, F. Ploger, S. Raby and M. Ratz, Stringy origin of non-Abelian discrete flavor symmetries, Nucl. Phys. B 768 (2007) 135 [hep-ph/0611020] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    A. Adulpravitchai, A. Blum and M. Lindner, Non-Abelian Discrete Groups from the Breaking of Continuous Flavor Symmetries, JHEP 09 (2009) 018 [arXiv:0907.2332] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    W. Burnside, Theory of groups of finite order, second edition, Cambridge University Press, Cambridge U.K. (1897).Google Scholar
  32. [32]
    E. Noether, Der Endlichkeitssatz der Invarianten endlicher Gruppen (in German), Math. Ann. 77 (1916) 89.CrossRefGoogle Scholar
  33. [33]
    B. Sturmfels, Algorithms in Invariant Theory, Texts and Monographs in Symbolic Computation, Springer, Heidelberg Germany (1993).Google Scholar
  34. [34]
    B. Meyer, On the symmetries of spherical harmonics, Canad. J. Math. 6 (1954) 135.zbMATHCrossRefGoogle Scholar
  35. [35]
    M. Koca, M. Al-Barwani and R. Koc, Breaking SO(3) into its closed subgroups by Higgs mechanism, J. Phys. A 30 (1997) 2109 [INSPIRE].MathSciNetADSGoogle Scholar
  36. [36]
    J. Patera and R.T. Sharp, Generating Functions For Characters Of Group Representations And Their Applications, Lect. Notes Phys. 94 (1979) 175.ADSCrossRefGoogle Scholar
  37. [37]
    T. Molien, Über die Invarianten der linearen Substitutionsgruppen (in German), Sitzungber. Konig. Preuss. Akad. Wiss. (J. Berl. Ber.) 52 (1897) 1152.Google Scholar
  38. [38]
    J.D. Dixon and B. Mortimer, Permutation Groups, Graduate Texts in Mathematics, Springer, Heidelberg Germany (1996).Google Scholar
  39. [39]
    L. O’Raifeartaigh, Group Structure Of Gauge Theories, Cambridge Monographs On Mathematical Physics, Cambridge University Press, Cambridge U.K. (1986).CrossRefGoogle Scholar
  40. [40]
    L. Michel, Symmetry defects and broken symmetry. Configurations — hidden symmetry, Rev. Mod. Phys. 52 (1980) 617 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    M.J. Linehan and G.E. Stedman, Little groups of irreps of O(3), SO(3), and the infinite axial subgroups, J. Phys. A 34 (2001) 6663 [math-ph/0012008].MathSciNetADSGoogle Scholar
  42. [42]
    P.O. Ludl, On the finite subgroups of U(3) of order smaller than 512, J. Phys. A 43 (2010) 395204 [Erratum ibid. A 44 (2011) 139501] [arXiv:1006.1479] [INSPIRE].MathSciNetGoogle Scholar
  43. [43]
    G.A. Miller, H.F. Blichfeldt and L.E. Dickson, Theory and Applications of Finite Groups, John Wiley & Sons, New York U.S.A. (1916) [Dover, New York U.S.A. (1961)].zbMATHGoogle Scholar
  44. [44]
    L. Michel and B.I. Zhilinskii, Symmetry, Invariants, and Topology. I. Basic Tools, Phys. Rept. 341 (2001) 11.MathSciNetADSzbMATHCrossRefGoogle Scholar
  45. [45]
    K.M. Parattu and A. Wingerter, Tribimaximal Mixing From Small Groups, Phys. Rev. D 84 (2011)013011 [arXiv:1012.2842] [INSPIRE].ADSGoogle Scholar
  46. [46]
    H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada and M. Tanimoto, Non-Abelian Discrete Symmetries in Particle Physics, Prog. Theor. Phys. Suppl. 183 (2010) 1 [arXiv:1003.3552] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  47. [47]
    W. Fairbairn and T. Fulton, Some comments on finite subgroups of SU(3), J. Math. Phys. 23 (1982)1747 [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  48. [48]
    A. Bovier, M. Luling and D. Wyler, Representations and Clebsch-Gordan coefficients of Z metacyclic groups, J. Math. Phys. 22 (1981) 1536 [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  49. [49]
    B. Durhuus, T. Jonsson and J.F. Wheater, Random walks on combs, J. Phys. A 39 (2006) 1009 [hep-th/0509191] [INSPIRE].MathSciNetADSGoogle Scholar
  50. [50]
    The GAP Group, GAP — Groups, Algorithms, and Programming, Version 4.4.12, (2008) http://www.gap-system.org
  51. [51]
    H.U. Besche, B. Eick and E.A. O’Brien, SmallGroups — a GAP package (2002), http://www.gap-system.org/Packages/sgl.html, http://www.icm.tu-bs.de/ag_algebra/software/small/
  52. [52]
    J.E. Humphreys, Reflection groups and Coxeter groups, Cambridge University Press, Cambridge U.K. (1990).zbMATHCrossRefGoogle Scholar
  53. [53]
    P.O. Ludl, Comments on the classification of the finite subgroups of SU(3), J. Phys. A 44 (2011)255204 [arXiv:1101.2308] [INSPIRE].MathSciNetADSGoogle Scholar
  54. [54]
    W. Grimus and P.O. Ludl, Finite flavour groups of fermions, arXiv:1110.6376 [INSPIRE].
  55. [55]
    P.O. Ludl, Systematic analysis of finite family symmetry groups and their application to the lepton sector, arXiv:0907.5587 [INSPIRE].
  56. [56]
    R. Zwicky and T. Fischbacher, On discrete minimal flavour violation, Phys. Rev. D 80 (2009)076009 [arXiv:0908.4182] [INSPIRE].ADSGoogle Scholar
  57. [57]
    C. Luhn, Spontaneous breaking of SU(3) to finite family symmetries: a pedestrian’s approach, JHEP 03 (2011) 108 [arXiv:1101.2417] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Springer, New York U.S.A. (1997), pg. 890.zbMATHCrossRefGoogle Scholar
  59. [59]
    P. Ramond, Group Theory in Physics. A physicists survey, Cambridge University Press, Cambridge U.K. (2010).Google Scholar
  60. [60]
    J.F. Cornwell, Group Theory in Physics, Vol. 1, Academic Press, New York U.S.A. (1997).zbMATHGoogle Scholar
  61. [61]
    W. Specht, Zur Theorie der Gruppen linearer Substitutionen II (in German), Jber. Deutsch. Math. Verein. 49 (1940) 207.MathSciNetGoogle Scholar
  62. [62]
    A. Hanany and Y.-H. He, A Monograph on the classification of the discrete subgroups of SU(4), JHEP 02 (2001) 027 [hep-th/9905212] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  63. [63]
    L.L. Everett and A.J. Stuart, Icosahedral A5 Family Symmetry and the Golden Ratio Prediction for Solar Neutrino Mixing, Phys. Rev. D 79 (2009) 085005 [arXiv:0812.1057] [INSPIRE].ADSGoogle Scholar
  64. [64]
    G. Etesi, Spontaneous symmetry breaking in SO(3) gauge theory to discrete subgroups, J. Math. Phys. 37 (1996) 1596 [hep-th/9706029] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  65. [65]
    M. Koca, R. Koc and H. Tutunculer, Explicit breaking of SO(3) with Higgs fields in the representations L = 2 and L = 3, Int. J. Mod. Phys. A 18 (2003) 4817 [hep-ph/0410270] [INSPIRE].MathSciNetADSGoogle Scholar
  66. [66]
    M. Holthausen and M.A. Schmidt, Natural Vacuum Alignment from Group Theory: The Minimal Case, JHEP 01 (2012) 126 [arXiv:1111.1730] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    J. Berger and Y. Grossman, Model of leptons from SO(3) → A4, JHEP 02 (2010) 071 [arXiv:0910.4392] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    G. Altarelli and F. Feruglio, Discrete Flavor Symmetries and Models of Neutrino Mixing, Rev. Mod. Phys. 82 (2010) 2701 [arXiv:1002.0211] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    J. Patera, R.T. Sharp and P. Winternitz, Polynomial irreducible tensors for point groups, J. Math. Phys. 19 (1978) 2362.MathSciNetADSzbMATHCrossRefGoogle Scholar
  70. [70]
    R. King, J. Patera and R.T. Sharp, On finite and continuous little groups of representations of semi-simple Lie groups, J. Phys. A 15 (1982) 1143.MathSciNetADSGoogle Scholar
  71. [71]
    P. Desmier, R. Sharp and J. Patera, Analytic SU(3) states in a finite subgroup basis, J. Math. Phys. 23 (1982) 1393 [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  72. [72]
    J.D. Louck, Unitary symmetry and combinatorics, World Scientific, New York U.S.A. (2008).zbMATHCrossRefGoogle Scholar
  73. [73]
    M. Ikeda, On Complex Spherical Harmonics, Prog. Theor. Phys. 32 (1964) 178.ADSzbMATHCrossRefGoogle Scholar
  74. [74]
    T. Kayama, On the normalization of solid harmonics for U(3), Prog. Theor. Phys. 39 (1968) 850 [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    H. Georgi, Frontiers in Physics. Vol. 54: Lie Algebras in Particle Physics. From Isospin to Unified Theories, Westview Press, Boulder U.S.A. (1982).Google Scholar
  76. [76]
    R. Slansky, Group Theory for Unified Model Building, Phys. Rept. 79 (1981) 1 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.KTH Royal Institute of Technology, School of Engineering Sciences, Department of Theoretical PhysicsAlbaNova University CenterStockholmSweden
  2. 2.School of Physics & AstronomyUniversity of SouthamptonHighfield, SouthamptonUK

Personalised recommendations