Journal of High Energy Physics

, 2012:113 | Cite as

Symmetries and currents of the ideal and unitary Fermi gases

Open Access
Article

Abstract

The maximal algebra of symmetries of the free single-particle Schrödinger equation is determined and its relevance for the holographic duality in non-relativistic Fermi systems is investigated. This algebra of symmetries is an infinite dimensional extension of the Schrödinger algebra, it is isomorphic to the Weyl algebra of quantum observables, and it may be interpreted as a non-relativistic higher-spin algebra. The associated infinite collection of Noether currents bilinear in the fermions are derived from their relativistic counterparts via a light-like dimensional reduction. The minimal coupling of these currents to background sources is rewritten in a compact way by making use of Weyl quantisation. Pushing forward the similarities with the holographic correspondence between the minimal higher-spin gravity and the critical O(N ) model, a putative bulk dual of the unitary and the ideal Fermi gases is briefly discussed.

Keywords

Holography and condensed matter physics (AdS/CMT) AdS-CFT Correspondence Space-Time Symmetries 

References

  1. [1]
    I. Bloch, J. Dalibard and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80 (2008) 885 [arXiv:0704.3011] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    S. Giorgini, L.P. Pitaevskii and S. Stringari, Theory of ultracold atomic Fermi gases, Rev. Mod. Phys. 80 (2008) 1215 [arXiv:0706.3360] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    W. Ketterle and M.W. Zwierlein, Making, probing and understanding ultracold Fermi gases, Nuovo Cim. 31 (2008) 247 [arXiv:0801.2500].Google Scholar
  4. [4]
    W. Zwerger, The BCS-BEC crossover and the unitary Fermi gas, Springer, U.S.A. (2011).Google Scholar
  5. [5]
    U. Niederer, The maximal kinematical invariance group of the free Schrödinger equation., Helv. Phys. Acta 45 (1972) 802 [INSPIRE].MathSciNetGoogle Scholar
  6. [6]
    C. Hagen, Scale and conformal transformations in galilean-covariant field theory, Phys. Rev. D 5 (1972) 377 [INSPIRE].ADSGoogle Scholar
  7. [7]
    T. Mehen, I.W. Stewart and M.B. Wise, Conformal invariance for nonrelativistic field theory, Phys. Lett. B 474 (2000) 145 [hep-th/9910025] [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    F. Werner and Y. Castin, The unitary three-body problem in a trap, Phys. Rev. Lett. 97 (2006) 150401 [cond-mat/0507399] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    F. Werner and Y. Castin, Unitary gas in an isotropic harmonic trap: symmetry properties and applications, Phys. Rev. A 74 (2006) 053604.ADSGoogle Scholar
  10. [10]
    Y. Castin and F. Werner, The unitary gas and its symmetry properties, arXiv:1103.2851.
  11. [11]
    Y. Nishida and D.T. Son, Nonrelativistic conformal field theories, Phys. Rev. D 76 (2007) 086004 [arXiv:0706.3746] [INSPIRE].MathSciNetADSGoogle Scholar
  12. [12]
    Y. Nishida and D.T. Son, Unitary Fermi gas, ǫ-expansion and nonrelativistic conformal field theories, arXiv:1004.3597 [INSPIRE].
  13. [13]
    D. Son, Toward an AdS/cold atoms correspondence: A Geometric realization of the Schrödinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [INSPIRE].MathSciNetADSGoogle Scholar
  14. [14]
    K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    J.-W. Chen and W.-Y. Wen, Shear viscosity of a non-relativistic conformal gas in two dimensions, arXiv:0808.0399 [INSPIRE].
  16. [16]
    P. Kovtun and D. Nickel, Black holes and non-relativistic quantum systems, Phys. Rev. Lett. 102 (2009) 011602 [arXiv:0809.2020] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    C.A. Fuertes and S. Moroz, Correlation functions in the non-relativistic AdS/CFT correspondence, Phys. Rev. D 79 (2009) 106004 [arXiv:0903.1844] [INSPIRE].ADSGoogle Scholar
  18. [18]
    P. Nikolic and S. Sachdev, Renormalization-group fixed points, universal phase diagram and 1/N expansion for quantum liquids with interactions near the unitarity limit, Phys. Rev. A 75 (2007) 033608 [cond-mat/0609106] [INSPIRE].ADSGoogle Scholar
  19. [19]
    M.Y. Veillette, D.E. Sheehy and L. Radzihovsky, Large-N expansion for unitary superfluid Fermi gases, Phys. Rev. A 75 (2007) 043614 [cond-mat/0610798] [INSPIRE].ADSGoogle Scholar
  20. [20]
    H. Abuki and T. Brauner, Strongly interacting Fermi systems in 1/N expansion: From cold atoms to color superconductivity, Phys. Rev. D 78 (2008) 125010 [arXiv:0810.0400] [INSPIRE].ADSGoogle Scholar
  21. [21]
    I. Klebanov and A. Polyakov, AdS dual of the critical O(N ) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].MathSciNetADSGoogle Scholar
  22. [22]
    S. Giombi and X. Yin, Higher spin gauge theory and holography: the three-point functions, JHEP 09 (2010) 115 [arXiv:0912.3462] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    S. Giombi and X. Yin, Higher spins in AdS and twistorial holography, JHEP 04 (2011) 086 [arXiv:1004.3736] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    X. Bekaert, E. Meunier and S. Moroz, Towards a gravity dual of the unitary Fermi gas, arXiv:1111.1082 [INSPIRE].
  25. [25]
    E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].
  26. [26]
    M. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dS(d), Phys. Lett. B 567 (2003) 139 [hep-th/0304049] [INSPIRE].MathSciNetADSGoogle Scholar
  27. [27]
    M. Vasiliev, Higher spin gauge theories in various dimensions, Fortsch. Phys. 52 (2004) 702 [hep-th/0401177] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  28. [28]
    M. Vasiliev, Higher spin gauge theories in any dimension, Comptes Rendus Physique 5 (2004) 1101 [hep-th/0409260] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    X. Bekaert, S. Cnockaert, C. Iazeolla and M. Vasiliev, Nonlinear higher spin theories in various dimensions, in the proceedings of the First Solvay workshop on higher-spin gauge theories, May 12-14, Brussels, Belgium (2004), hep-th/0503128 [INSPIRE].
  30. [30]
    C. Iazeolla, On the algebraic structure of higher-spin field equations and new exact solutions, arXiv:0807.0406 [INSPIRE].
  31. [31]
    X. Bekaert, N. Boulanger and P. Sundell, How higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examples, accepted for publication in Rev. Mod. Phys., arXiv:1007.0435 [INSPIRE].
  32. [32]
    M.G. Eastwood, Higher symmetries of the Laplacian, Annals Math. 161 (2005) 1645 [hep-th/0206233] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  33. [33]
    I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    S.S. Gubser and I.R. Klebanov, A universal result on central charges in the presence of double trace deformations, Nucl. Phys. B 656 (2003) 23 [hep-th/0212138] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    M. Valenzuela, Higher-spin symmetries of the free Schrödinger equation, arXiv:0912.0789 [INSPIRE].
  36. [36]
    D. Son and M. Wingate, General coordinate invariance and conformal invariance in nonrelativistic physics: unitary Fermi gas, Annals Phys. 321 (2006) 197 [cond-mat/0509786] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  37. [37]
    J.-M. Levy-Leblond, Galilei group and nonrelativistic quantum mechanics, J. Math. Phys. 4 (1963) 776.MathSciNetADSMATHCrossRefGoogle Scholar
  38. [38]
    J.-M. Levy-Leblond, Galilean quantum field theories and a ghostless Lee model, Commun. Math. Phys. 4 (1967) 157.MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    J.-M. Levy-Leblond, Galilei group and galilean invariance,, in Group theory and applications II, E.M. Loebl ed., Academic Press, U.S.A. (1968).Google Scholar
  40. [40]
    S. Weinberg, The quantum theory of fields. Volume 1: foundations, Cambridge University Press, Cambridge U.K. (1995), section 2.7.Google Scholar
  41. [41]
    V. Bargmann, On Unitary ray representations of continuous groups, Annals Math. 59 (1954) 1.MathSciNetMATHCrossRefGoogle Scholar
  42. [42]
    C. Duval, G. Burdet, H. Kunzle and M. Perrin, Bargmann structures and Newton-Cartan theory, Phys. Rev. D 31 (1985) 1841 [INSPIRE].MathSciNetADSGoogle Scholar
  43. [43]
    C. Duval and P.A. Horvathy, Non-relativistic conformal symmetries and Newton-Cartan structures, J. Phys. A 42 (2009) 465206 [arXiv:0904.0531] [INSPIRE].MathSciNetADSGoogle Scholar
  44. [44]
    X. Bekaert, Higher spin algebras as higher symmetries, Physics AUC 16 (2006) 58 [arXiv:0704.0898] [INSPIRE].Google Scholar
  45. [45]
    M. Perroud, Projective Representations of the Schrödinger Group, Helv. Phys. Acta 50 (1977) 233 [INSPIRE].MathSciNetGoogle Scholar
  46. [46]
    U. Niederer, The maximal kinematical invariance groups of schroedinger equations with arbitrary potentials, Helv. Phys. Acta 47 (1974) 167 [INSPIRE].MathSciNetGoogle Scholar
  47. [47]
    P. Feinsilver, J. Kocik and R. Schott, Representations of the Schrödinger algebra and Appell systems, Fortschr. Phys. 52 (2004) 343.MathSciNetMATHCrossRefGoogle Scholar
  48. [48]
    C. Duval, G.W. Gibbons and P. Horvathy, Celestial mechanics, conformal structures and gravitational waves, Phys. Rev. D 43 (1991) 3907 [hep-th/0512188] [INSPIRE].MathSciNetADSGoogle Scholar
  49. [49]
    C. Duval, M. Hassaine and P. Horvathy, The geometry of Schrödinger symmetry in gravity background/non-relativistic CFT, Annals Phys. 324 (2009) 1158 [arXiv:0809.3128] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  50. [50]
    G. Burdet, M. Perrin and P. Sorba, About the non-relativistic structure of the conformal algebra, Comm. Math. Phys. 34 (1973) 85.MathSciNetADSMATHCrossRefGoogle Scholar
  51. [51]
    X. Bekaert, E. Joung and J. Mourad, On higher spin interactions with matter, JHEP 05 (2009) 126 [arXiv:0903.3338] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    F.A. Berends, G.J.H. Burgers and H. van Dam, Explicit construction of conserved currents for massless fields of arbitrary spin, Nucl. Phys. B 271 (1986) 42.Google Scholar
  53. [53]
    X. Bekaert, E. Joung and J. Mourad, Effective action in a higher-spin background, JHEP 02 (2011) 048 [arXiv:1012.2103] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    E. Fradkin and A.A. Tseytlin, Conformal supergravity, Phys. Rept. 119 (1985) 233 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    L. Girardello, M. Porrati and A. Zaffaroni, 3D interacting CFTs and generalized Higgs phenomenon in higher spin theories on AdS, Phys. Lett. B 561 (2003) 289 [hep-th/0212181] [INSPIRE].MathSciNetADSGoogle Scholar
  56. [56]
    W.D. Goldberger, AdS/CFT duality for non-relativistic field theory, JHEP 03 (2009) 069 [arXiv:0806.2867] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    J.L. Barbon and C.A. Fuertes, On the spectrum of nonrelativistic AdS/CFT, JHEP 09 (2008) 030 [arXiv:0806.3244] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    F.-L. Lin and S.-Y. Wu, Non-relativistic holography and singular black hole, Phys. Lett. B 679 (2009) 65 [arXiv:0810.0227] [INSPIRE].MathSciNetADSGoogle Scholar
  59. [59]
    B. Julia and H. Nicolai, Null Killing vector dimensional reduction and galilean geometrodynamics, Nucl. Phys. B 439 (1995) 291 [hep-th/9412002] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  60. [60]
    D. Anninos, T. Hartman and A. Strominger, Higher spin realization of the dS/CFT correspondence, arXiv:1108.5735 [INSPIRE].
  61. [61]
    M. Flato and C. Fronsdal, One massless particle equals two dirac singletons: elementary particles in a curved space. 6, Lett. Math. Phys. 2 (1978) 421 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  62. [62]
    M. Vasiliev, Higher spin superalgebras in any dimension and their representations, JHEP 12 (2004) 046 [hep-th/0404124] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  63. [63]
    M.A. Vasiliev, Higher spin gauge theories in four-dimensions, three-dimensions and two-dimensions, Int. J. Mod. Phys. D 5 (1996) 763 [hep-th/9611024] [INSPIRE].MathSciNetADSGoogle Scholar
  64. [64]
    M. Barth and W. Zwerger, Tan relations in one dimension, Annals of Physics 326 (2011) 2544 [arXiv:1101.5594].ADSMATHCrossRefGoogle Scholar
  65. [65]
    M.R. Douglas, L. Mazzucato and S.S. Razamat, Holographic dual of free field theory, Phys. Rev. D 83 (2011) 071701 [arXiv:1011.4926] [INSPIRE].ADSGoogle Scholar
  66. [66]
    M. Vasiliev, Conformal higher spin symmetries of 4D massless supermultiplets and OSp(L, 2M ) invariant equations in generalized (super)space, Phys. Rev. D 66 (2002) 066006 [hep-th/0106149] [INSPIRE].MathSciNetADSGoogle Scholar
  67. [67]
    O. Gelfond and M. Vasiliev, Higher spin fields in siegel space, currents and theta functions, JHEP 03 (2009) 125 [arXiv:0801.2191] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  68. [68]
    M. Vasiliev, Relativity, causality, locality, quantization and duality in the Sp(2M ) invariant generalized space-time, hep-th/0111119 [INSPIRE].
  69. [69]
    O. Gelfond and M. Vasiliev, Higher rank conformal fields in the Sp(2M ) symmetric generalized space-time, Theor. Math. Phys. 145 (2005) 1400 [Teor. Mat. Fiz. 145 (2005) 35] [hep-th/0304020] [INSPIRE].
  70. [70]
    H. Weyl, Quantum mechanics and group theory, Z. Phys. 46 (1927) 1 [INSPIRE].ADSMATHCrossRefGoogle Scholar
  71. [71]
    E.P. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40 (1932) 749 [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    H. Groenewold, On the principles of elementary quantum mechanics, Physica 12 (1946) 405 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  73. [73]
    J.E. Moyal, Quantum mechanics as a statistical theory, Proc. Cambridge Phil. Soc. 45 (1949) 99.MathSciNetADSMATHCrossRefGoogle Scholar
  74. [74]
    M. Hillery, R. O’Connell, M. Scully and E.P. Wigner, Distribution functions in physics: fundamentals, Phys. Rept. 106 (1984) 121 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  75. [75]
    R. Cherniha and M. Henkel, On nonlinear partial differential equations with an infinite dimensional conditional symmetry, J. Stat. Phys 75 (1994) 1023 [math-ph/0402059] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    M. Henkel and J. Unterberger, Schrödinger invariance and space-time symmetries, Nucl. Phys. B 660 (2003) 407 [hep-th/0302187] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  77. [77]
    S. Tan, Short range scaling laws of quantum gases with contact interactions, cond-mat/0412764.

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques et Physique Théorique, Unité Mixte de Recherche 7350 du CNRS, Fédération de Recherche 2964 Denis PoissonUniversité François RabelaisToursFrance
  2. 2.Institut für Theoretische PhysikHeidelbergGermany
  3. 3.Department of PhysicsUniversity of WashingtonSeattleU.S.A.

Personalised recommendations