Journal of High Energy Physics

, 2012:93 | Cite as

Maximizing boosted top identification by minimizing N-subjettiness

Article

Abstract

N -subjettiness is a jet shape designed to identify boosted hadronic objects such as top quarks. Given N subjet axes within a jet, N-subjettiness sums the angular distances of jet constituents to their nearest subjet axis. Here, we generalize and improve on N -subjettiness by minimizing over all possible subjet directions, using a new variant of the k-means clustering algorithm. On boosted top benchmark samples from the BOOST2010 workshop, we demonstrate that a simple cut on the 3-subjettiness to 2-subjettiness ratio yields 20% (50%) tagging efficiency for a 0.23% (4.1%) fake rate, making N -subjettiness a highly effective boosted top tagger. N-subjettiness can be modified by adjusting an angular weighting exponent, and we find that the jet broadening measure is preferred for boosted top searches. We also explore multivariate techniques, and show that additional improvements are possible using a modified Fisher discriminant. Finally, we briefly mention how our minimization procedure can be extended to the entire event, allowing the event shape N-jettiness to act as a fixed N cone jet algorithm.

Keywords

Jets Beyond Standard Model Hadronic Colliders 

References

  1. [1]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    G.P. Salam, Towards jetography, Eur. Phys. J. C 67 (2010) 637 [arXiv:0906.1833] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    ATLAS collaboration, G. Aad et al., Search for new phenomena with the monojet and missing transverse momentum signature using the ATLAS detector in \( \sqrt {s} = 7\;TeV \) proton-proton collisions, Phys. Lett. B 705 (2011) 294 [arXiv:1106.5327] [INSPIRE].ADSGoogle Scholar
  4. [4]
    CMS collaboration, S. Chatrchyan et al., Search for new physics with a mono-jet and missing transverse energy in pp collisions at \( \sqrt {s} = 7\;TeV \) , Phys. Rev. Lett. 107 (2011) 201804 [arXiv:1106.4775] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    ATLAS collaboration, G. Aad et al., Search for new physics in dijet mass and angular distributions in pp collisions at \( \sqrt {s} = 7\;TeV \) measured with the ATLAS detector, New J. Phys. 13 (2011) 053044 [arXiv:1103.3864] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    CMS collaboration, S. Chatrchyan et al., Search for resonances in the dijet mass spectrum from 7TeV pp collisions at CMS, Phys. Lett. B 704 (2011) 123 [arXiv:1107.4771] [INSPIRE].ADSGoogle Scholar
  7. [7]
    ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7\;TeV \) proton-proton collisions, Phys. Lett. B 701 (2011) 186 [arXiv:1102.5290] [INSPIRE].
  8. [8]
    CMS collaboration, S. Chatrchyan et al., Search for new physics with jets and missing transverse momentum in pp collisions at \( \sqrt {s} = 7\;TeV \) , JHEP 08 (2011) 155 [arXiv:1106.4503] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    CMS collaboration, Jet substructure algorithms, Physics Analysis Summary PAS-JME-10-013, CERN, Geneva Switzerland (2011).Google Scholar
  10. [10]
    CMS collaboration, Search for BSM t \( \overline t \) production in the boosted all-hadronic final state, Physics Analysis Summary CMS-PAS-EXO-11-006, CERN, Geneva Switzerland (2011).Google Scholar
  11. [11]
    ATLAS collaboration, Measurement of jet mass and substructure for inclusive jets in \( \sqrt {s} = 7\;TeV \) pp collisions with the ATLAS experiment, note ATLAS-CONF-2011-073, CERN, Geneva Switzerland (2011).Google Scholar
  12. [12]
    DØ collaboration, V.M. Abazov et al., Measurement of color flow in t \( \overline t \) events from p \( \overline p \) collisions at \( \sqrt {s} = 1.96\;TeV \) , Phys. Rev. D 83 (2011) 092002 [arXiv:1101.0648] [INSPIRE].ADSGoogle Scholar
  13. [13]
    CDF collaboration, T. Aaltonen et al., Study of substructure of high transverse momentum jets produced in proton-antiproton collisions at \( \sqrt {s} = 1.96\;TeV \), arXiv:1106.5952 [INSPIRE].
  14. [14]
    A. Abdesselam et al., Boosted objects: a probe of beyond the standard model physics, Eur. Phys. J. C 71 (2011) 1661 [arXiv:1012.5412] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M.H. Seymour, Searches for new particles using cone and cluster jet algorithms: a comparative study, Z. Phys. C 62 (1994) 127 [INSPIRE].ADSGoogle Scholar
  16. [16]
    J. Butterworth, B. Cox and J.R. Forshaw, WW scattering at the CERN LHC, Phys. Rev. D 65 (2002) 096014 [hep-ph/0201098] [INSPIRE]. ADSGoogle Scholar
  17. [17]
    G. Brooijmans, High pT hadronic top quark identification, note PHYS-CONF-2008-008, CERN, Geneva Switzerland (2008) [ATL-COM-PHYS-2008-001].Google Scholar
  18. [18]
    J. Thaler and L.-T. Wang, Strategies to identify boosted tops, JHEP 07 (2008) 092 [arXiv:0806.0023] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    D.E. Kaplan, K. Rehermann, M.D. Schwartz and B. Tweedie, Top tagging: a method for identifying boosted hadronically decaying top quarks, Phys. Rev. Lett. 101 (2008) 142001 [arXiv:0806.0848] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    T. Plehn, G.P. Salam and M. Spannowsky, Fat jets for a light Higgs, Phys. Rev. Lett. 104 (2010) 111801 [arXiv:0910.5472] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    T. Plehn, M. Spannowsky, M. Takeuchi and D. Zerwas, Stop reconstruction with tagged tops, JHEP 10 (2010) 078 [arXiv:1006.2833] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    L.G. Almeida et al., Substructure of high-p T jets at the LHC, Phys. Rev. D 79 (2009) 074017 [arXiv:0807.0234] [INSPIRE].MathSciNetADSGoogle Scholar
  23. [23]
    J. Gallicchio and M.D. Schwartz, Seeing in color: jet superstructure, Phys. Rev. Lett. 105 (2010) 022001 [arXiv:1001.5027] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Hook, M. Jankowiak and J.G. Wacker, Jet dipolarity: top tagging with color flow, arXiv:1102.1012 [INSPIRE].
  25. [25]
    M. Jankowiak and A.J. Larkoski, Jet substructure without trees, JHEP 06 (2011) 057 [arXiv:1104.1646] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S.D. Ellis, C.K. Vermilion and J.R. Walsh, Techniques for improved heavy particle searches with jet substructure, Phys. Rev. D 80 (2009) 051501 [arXiv:0903.5081] [INSPIRE].ADSGoogle Scholar
  28. [28]
    S.D. Ellis, C.K. Vermilion and J.R. Walsh, Recombination algorithms and jet substructure: pruning as a tool for heavy particle searches, Phys. Rev. D 81 (2010) 094023 [arXiv:0912.0033] [INSPIRE].ADSGoogle Scholar
  29. [29]
    D. Krohn, J. Thaler and L.-T. Wang, Jet trimming, JHEP 02 (2010) 084 [arXiv:0912.1342] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    D.E. Soper and M. Spannowsky, Combining subjet algorithms to enhance ZH detection at the LHC, JHEP 08 (2010) 029 [arXiv:1005.0417] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    L.G. Almeida, S.J. Lee, G. Perez, G. Sterman and I. Sung, Template overlap method for massive jets, Phys. Rev. D 82 (2010) 054034 [arXiv:1006.2035] [INSPIRE].ADSGoogle Scholar
  32. [32]
    D.E. Soper and M. Spannowsky, Finding physics signals with shower deconstruction, Phys. Rev. D 84 (2011) 074002 [arXiv:1102.3480] [INSPIRE].ADSGoogle Scholar
  33. [33]
    J. Thaler and K. Van Tilburg, Identifying boosted objects with N-subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, N -jettiness: an inclusive event shape to veto jets, Phys. Rev. Lett. 105 (2010) 092002 [arXiv:1004.2489] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    C.F. Berger, T. Kucs and G.F. Sterman, Event shape/energy flow correlations, Phys. Rev. D 68 (2003) 014012 [hep-ph/0303051] [INSPIRE].ADSGoogle Scholar
  36. [36]
    S.D. Ellis, C.K. Vermilion, J.R. Walsh, A. Hornig and C. Lee, Jet shapes and jet algorithms in SCET, JHEP 11 (2010) 101 [arXiv:1001.0014] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    J.-H. Kim, Rest frame subjet algorithm with SISCone jet for fully hadronic decaying Higgs search, Phys. Rev. D 83 (2011) 011502 [arXiv:1011.1493] [INSPIRE].ADSGoogle Scholar
  38. [38]
    C. Englert, T.S. Roy and M. Spannowsky, Ditau jets in Higgs searches, Phys. Rev. D 84 (2011) 075026 [arXiv:1106.4545] [INSPIRE].ADSGoogle Scholar
  39. [39]
    Y. Bai and J. Shelton, Composite octet searches with jet substructure, arXiv:1107.3563 [INSPIRE].
  40. [40]
    S. Catani, Y.L. Dokshitzer, M. Seymour and B. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [INSPIRE].ADSGoogle Scholar
  42. [42]
    S.P. Lloyd, Least squares quantization in PCM, IEEE Trans. Info. Theor. 28 (1982) 129.MathSciNetMATHCrossRefGoogle Scholar
  43. [43]
    E. Farhi, A QCD test for jets, Phys. Rev. Lett. 39 (1977) 1587 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    S. Catani, G. Turnock and B. Webber, Jet broadening measures in e + e annihilation, Phys. Lett. B 295 (1992) 269 [INSPIRE].ADSGoogle Scholar
  45. [45]
    C. Ding, D. Zhou, X. He and H. Zha, R1-pca: rotational invariant l1-norm principal component analysis for robust subspace factorization, in Proceedings of the 23rd international conference on Machine learning, ICML 06, ACM, New York U.S.A. (2006), pg. 281.Google Scholar
  46. [46]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet: software package for jet finding in pp and e + e collisions webpage, http://www.fastjet.fr/.
  47. [47]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k T jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].ADSGoogle Scholar
  48. [48]
    J. Gallicchio and M.D. Schwartz, Quark and gluon tagging at the LHC, Phys. Rev. Lett. 107 (2011) 172001 [arXiv:1106.3076] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    Y.L. Dokshitzer, G. Leder, S. Moretti and B. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, hep-ph/9907280 [INSPIRE].
  51. [51]
    J. Butterworth, J. Couchman, B. Cox and B. Waugh, KtJet: a C++ implementation of the K clustering algorithm, Comput. Phys. Commun. 153 (2003) 85 [hep-ph/0210022] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  54. [54]
    G. Corcella et al., HERWIG 6.5 release note, hep-ph/0210213 [INSPIRE].
  55. [55]
    J. Butterworth, J.R. Forshaw and M. Seymour, Multiparton interactions in photoproduction at HERA, Z. Phys. C 72 (1996) 637 [hep-ph/9601371] [INSPIRE].ADSGoogle Scholar
  56. [56]
    ATLAS collaboration, ATLAS Monte Carlo tunes for MC09, note PHYS-PUB-2010-002, CERN, Geneva Switzerland (2010).Google Scholar
  57. [57]
    P.Z. Skands, Tuning Monte Carlo generators: the Perugia tunes, Phys. Rev. D 82 (2010) 074018 [arXiv:1005.3457] [INSPIRE].ADSGoogle Scholar
  58. [58]
    CMS collaboration, A Cambridge-Aachen (C-A) based Jet Algorithm for boosted top-jet tagging, Physics Analysis Summary PAS-JME-09-001, CERN, Geneva Switzerland (2009).Google Scholar
  59. [59]
    CMS collaboration, Search for high mass tt resonances in the all-hadronic mode, Physics Analysis Summary PAS-EXO-09-002, CERN, Geneva Switzerland (2009).Google Scholar
  60. [60]
    S. Rappoccio, A new top jet tagging algorithm for highly boosted top jets, note CMS-CR-2009-255, CERN, Geneva Switzerland (2009) [CERN-CMS-CR-2009-255].Google Scholar
  61. [61]
    ATLAS collaboration, Prospects for top anti-top resonance searches using early ATLAS data., note PHYS-PUB-2010-008, CERN, Geneva Switzerland (2010).Google Scholar
  62. [62]
    ATLAS collaboration, Reconstruction of high mass tt resonances in the lepton+jets channel, note PHYS-PUB-2009-081, CERN, Geneva Switzerland (2009) [ATL-COM-PHYS-2009-255].Google Scholar
  63. [63]
    R. Fisher, The use of multiple measurements in taxonomic problems, Annals Eugen. 7 (1936) 179.CrossRefGoogle Scholar
  64. [64]
    T. Anderson and R. Bahadur, Classification into two multivariate normal distributions with different covariance matrices, Annals Math. Statist. 33 (1962) 420.MathSciNetMATHCrossRefGoogle Scholar
  65. [65]
    S. Chekanov, A new jet algorithm based on the k-means clustering for the reconstruction of heavy states from jets, Eur. Phys. J. C 47 (2006) 611 [hep-ph/0512027] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    C. Berger et al., Snowmass 2001: jet energy flow project, eConf C 010630 (2001) P512 [hep-ph/0202207] [INSPIRE].Google Scholar
  67. [67]
    L. Angelini et al., Jet analysis by deterministic annealing, Phys. Lett. B 545 (2002) 315 [hep-ph/0207032] [INSPIRE].ADSGoogle Scholar
  68. [68]
    L. Angelini et al., Deterministic annealing as a jet clustering algorithm in hadronic collisions, Phys. Lett. B 601 (2004) 56 [hep-ph/0407214] [INSPIRE].ADSGoogle Scholar
  69. [69]
    D. Grigoriev, E. Jankowski and F. Tkachov, Towards a standard jet definition, Phys. Rev. Lett. 91 (2003) 061801 [hep-ph/0301185] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    D. Grigoriev, E. Jankowski and F. Tkachov, Optimal jet finder, Comput. Phys. Commun. 155 (2003) 42 [hep-ph/0301226] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    Y.-S. Lai and B.A. Cole, Jet reconstruction in hadronic collisions by Gaussian filtering, arXiv:0806.1499 [INSPIRE].
  72. [72]
    I. Volobouev, FFTJet: a package for multiresolution particle jet reconstruction in the Fourier domain, arXiv:0907.0270 [INSPIRE].
  73. [73]
    S. Ellis, J. Huston and M. Tonnesmann, On building better cone jet algorithms, eConf C 010630 (2001) P513 [hep-ph/0111434] [INSPIRE].Google Scholar
  74. [74]
    S. Ellis, J. Huston, K. Hatakeyama, P. Loch and M. Tonnesmann, Jets in hadron-hadron collisions, Prog. Part. Nucl. Phys. 60 (2008) 484 [arXiv:0712.2447] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The beam thrust cross section for Drell-Yan at NNLL order, Phys. Rev. Lett. 106 (2011) 032001 [arXiv:1005.4060] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    C.F. Berger, C. Marcantonini, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Higgs production with a central jet veto at NNLL + NNLO, JHEP 04 (2011) 092 [arXiv:1012.4480] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    T.T. Jouttenus, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The soft function for exclusive N -jet production at hadron colliders, Phys. Rev. D 83 (2011) 114030 [arXiv:1102.4344] [INSPIRE].ADSGoogle Scholar
  78. [78]
    C.W. Bauer, N.D. Dunn and A. Hornig, Subtractions for SCET soft functions, arXiv:1102.4899 [INSPIRE].
  79. [79]
    C.W. Bauer, F.J. Tackmann, J.R. Walsh and S. Zuberi, Factorization and resummation for dijet invariant mass spectra, arXiv:1106.6047 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations