Advertisement

Journal of High Energy Physics

, 2012:88 | Cite as

Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM

  • E. Bagnaschi
  • G. Degrassi
  • P. SlavichEmail author
  • A. Vicini
Open Access
Article

Abstract

We consider the gluon fusion production cross section of a scalar Higgs boson at NLO QCD in the SM and in the MSSM. We implement the calculation in the POWHEG approach, and match the NLO-QCD results with the PYTHIA and HERWIG QCD parton showers. We discuss a few representative scenarios in the SM and MSSM parameter spaces, with emphasis on the fermion and squark mass effects on the Higgs boson distributions.

Keywords

Higgs Physics Supersymmetric Standard Model NLO Computations Standard Model 

References

  1. [1]
    TEVNPH (Tevatron New Phenomena and Higgs Working Group), CDF and D0 collaboration, Combined CDF and D0 upper limits on standard model Higgs boson production with up to 8.6 fb −1 of data, arXiv:1107.5518 [INSPIRE].
  2. [2]
    CMS collaboration, S. Chatrchyan et al., Measurement of W + W production and search for the Higgs boson in pp collisions at \( \sqrt {s} = {7 }TeV \), Phys. Lett. B 699 (2011) 25 [arXiv:1102.5429] [INSPIRE].ADSGoogle Scholar
  3. [3]
    ATLAS collaboration, G. Aad et al., Limits on the production of the standard model Higgs boson in pp collisions at \( \sqrt {s} = {7 }TeV \) with the ATLAS detector, Eur. Phys. J. C 71 (2011) 1728 [arXiv:1106.2748] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    ATLAS collaboration, Search for the Higgs boson in the HW Wlvjj decay channel in pp collisions at \( \sqrt {s} = {7 }TeV \) with the ATLAS detector, Phys. Rev. Lett. 107 (2011) 231801 [arXiv:1109.3615] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    ATLAS collaboration, G. Aad et al., Search for the standard model Higgs boson in the decay channel HZZ(∗) → 4l with the ATLAS detector, Phys. Lett. B 705 (2011) 435 [arXiv:1109.5945] [INSPIRE].ADSGoogle Scholar
  6. [6]
    LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs cross sections: 1. Inclusive observables, arXiv:1101.0593 [INSPIRE].
  7. [7]
    H. Georgi, S. Glashow, M. Machacek and D.V. Nanopoulos, Higgs bosons from two gluon annihilation in proton proton collisions, Phys. Rev. Lett. 40 (1978) 692 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A. Djouadi, M. Spira and P. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440 [INSPIRE].ADSGoogle Scholar
  10. [10]
    M. Spira, A. Djouadi, D. Graudenz and P. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].
  11. [11]
    R. Harlander and P. Kant, Higgs production and decay: analytic results at next-to-leading order QCD, JHEP 12 (2005) 015 [hep-ph/0509189] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    C. Anastasiou, S. Beerli, S. Bucherer, A. Daleo and Z. Kunszt, Two-loop amplitudes and master integrals for the production of a Higgs boson via a massive quark and a scalar-quark loop, JHEP 01 (2007) 082 [hep-ph/0611236] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Analytic results for virtual QCD corrections to Higgs production and decay, JHEP 01 (2007) 021 [hep-ph/0611266] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    R. Bonciani, G. Degrassi and A. Vicini, Scalar particle contribution to Higgs production via gluon fusion at NLO, JHEP 11 (2007) 095 [arXiv:0709.4227] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    R.V. Harlander, Virtual corrections to ggH to two loops in the heavy top limit, Phys. Lett. B 492 (2000) 74 [hep-ph/0007289] [INSPIRE].ADSGoogle Scholar
  16. [16]
    S. Catani, D. de Florian and M. Grazzini, Higgs production in hadron collisions: soft and virtual QCD corrections at NNLO, JHEP 05 (2001) 025 [hep-ph/0102227] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    R.V. Harlander and W.B. Kilgore, Soft and virtual corrections to proton protonH + x at NNLO, Phys. Rev. D 64 (2001) 013015 [hep-ph/0102241] [INSPIRE].ADSGoogle Scholar
  18. [18]
    R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross-section for Higgs boson production in hadron hadron collisions, Nucl. Phys. B 665 (2003) 325 [hep-ph/0302135] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S. Marzani, R.D. Ball, V. Del Duca, S. Forte and A. Vicini, Higgs production via gluon-gluon fusion with finite top mass beyond next-to-leading order, Nucl. Phys. B 800 (2008) 127 [arXiv:0801.2544] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S. Marzani, R.D. Ball, V. Del Duca, S. Forte and A. Vicini, Finite-top-mass effects in NNLO Higgs production, Nucl. Phys. Proc. Suppl. 186 (2009) 98 [arXiv:0809.4934] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    R.V. Harlander and K.J. Ozeren, Top mass effects in Higgs production at next-to-next-to-leading order QCD: Virtual corrections, Phys. Lett. B 679 (2009) 467 [arXiv:0907.2997] [INSPIRE].ADSGoogle Scholar
  24. [24]
    R.V. Harlander and K.J. Ozeren, Finite top mass effects for hadronic Higgs production at next-to-next-to-leading order, JHEP 11 (2009) 088 [arXiv:0909.3420] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Pak, M. Rogal and M. Steinhauser, Virtual three-loop corrections to Higgs boson production in gluon fusion for finite top quark mass, Phys. Lett. B 679 (2009) 473 [arXiv:0907.2998] [INSPIRE].ADSGoogle Scholar
  26. [26]
    A. Pak, M. Rogal and M. Steinhauser, Finite top quark mass effects in NNLO Higgs boson production at LHC, JHEP 02 (2010) 025 [arXiv:0911.4662] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    R.V. Harlander, H. Mantler, S. Marzani and K.J. Ozeren, Higgs production in gluon fusion at next-to-next-to-leading order QCD for finite top mass, Eur. Phys. J. C 66 (2010) 359 [arXiv:0912.2104] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Krämer, E. Laenen and M. Spira, Soft gluon radiation in Higgs boson production at the LHC, Nucl. Phys. B 511 (1998) 523 [hep-ph/9611272] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S. Catani, D. de Florian, M. Grazzini and P. Nason, Soft gluon resummation for Higgs boson production at hadron colliders, JHEP 07 (2003) 028 [hep-ph/0306211] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S. Moch and A. Vogt, Higher-order soft corrections to lepton pair and Higgs boson production, Phys. Lett. B 631 (2005) 48 [hep-ph/0508265] [INSPIRE].ADSGoogle Scholar
  31. [31]
    V. Ravindran, Higher-order threshold effects to inclusive processes in QCD, Nucl. Phys. B 752 (2006) 173 [hep-ph/0603041] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A. Djouadi and P. Gambino, Leading electroweak correction to Higgs boson production at proton colliders, Phys. Rev. Lett. 73 (1994) 2528 [hep-ph/9406432] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A. Djouadi, P. Gambino and B.A. Kniehl, Two loop electroweak heavy fermion corrections to Higgs boson production and decay, Nucl. Phys. B 523 (1998) 17 [hep-ph/9712330] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Two loop light fermion contribution to Higgs production and decays, Phys. Lett. B 595 (2004) 432 [hep-ph/0404071] [INSPIRE].ADSGoogle Scholar
  35. [35]
    U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Master integrals for the two-loop light fermion contributions to ggH and Hγγ, Phys. Lett. B 600 (2004) 57 [hep-ph/0407162] [INSPIRE].ADSGoogle Scholar
  36. [36]
    U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Two-loop electroweak corrections to Higgs production in proton-proton collisions, hep-ph/0610033 [INSPIRE].
  37. [37]
    G. Degrassi and F. Maltoni, Two-loop electroweak corrections to Higgs production at hadron colliders, Phys. Lett. B 600 (2004) 255 [hep-ph/0407249] [INSPIRE].ADSGoogle Scholar
  38. [38]
    S. Actis, G. Passarino, C. Sturm and S. Uccirati, NLO electroweak corrections to Higgs boson production at hadron colliders, Phys. Lett. B 670 (2008) 12 [arXiv:0809.1301] [INSPIRE].ADSGoogle Scholar
  39. [39]
    S. Actis, G. Passarino, C. Sturm and S. Uccirati, NNLO computational techniques: the cases Hγγ and Hgg, Nucl. Phys. B 811 (2009) 182 [arXiv:0809.3667] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    R. Bonciani, G. Degrassi and A. Vicini, On the generalized harmonic polylogarithms of one complex variable, Comput. Phys. Commun. 182 (2011) 1253 [arXiv:1007.1891] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    C. Anastasiou, R. Boughezal and F. Petriello, Mixed QCD-electroweak corrections to Higgs boson production in gluon fusion, JHEP 04 (2009) 003 [arXiv:0811.3458] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    F. Demartin, S. Forte, E. Mariani, J. Rojo and A. Vicini, The impact of PDF and alphas uncertainties on Higgs Production in gluon fusion at hadron colliders, Phys. Rev. D 82 (2010) 014002 [arXiv:1004.0962] [INSPIRE].ADSGoogle Scholar
  43. [43]
    S. Alekhin et al., The PDF4LHC working group interim report, arXiv:1101.0536 [INSPIRE].
  44. [44]
    S. Dawson, A. Djouadi and M. Spira, QCD corrections to SUSY Higgs production: the role of squark loops, Phys. Rev. Lett. 77 (1996) 16 [hep-ph/9603423] [INSPIRE].
  45. [45]
    M. Muhlleitner and M. Spira, Higgs boson production via gluon fusion: squark loops at NLO QCD, Nucl. Phys. B 790 (2008) 1 [hep-ph/0612254] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    R.V. Harlander and M. Steinhauser, Hadronic Higgs production and decay in supersymmetry at next-to-leading order, Phys. Lett. B 574 (2003) 258 [hep-ph/0307346] [INSPIRE]. ADSGoogle Scholar
  47. [47]
    R. Harlander and M. Steinhauser, Effects of SUSY QCD in hadronic Higgs production at next-to-next-to-leading order, Phys. Rev. D 68 (2003) 111701 [hep-ph/0308210] [INSPIRE].ADSGoogle Scholar
  48. [48]
    R.V. Harlander and M. Steinhauser, Supersymmetric Higgs production in gluon fusion at next-to-leading order, JHEP 09 (2004) 066 [hep-ph/0409010] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    R.V. Harlander and F. Hofmann, Pseudo-scalar Higgs production at next-to-leading order SUSY-QCD, JHEP 03 (2006) 050 [hep-ph/0507041] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    G. Degrassi and P. Slavich, On the NLO QCD corrections to Higgs production and decay in the MSSM, Nucl. Phys. B 805 (2008) 267 [arXiv:0806.1495] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    G. Degrassi, S. Di Vita and P. Slavich, NLO QCD corrections to pseudoscalar Higgs production in the MSSM, JHEP 08 (2011) 128 [arXiv:1107.0914] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    C. Anastasiou, S. Beerli and A. Daleo, The two-loop QCD amplitude ggh, H in the minimal supersymmetric standard model, Phys. Rev. Lett. 100 (2008) 241806 [arXiv:0803.3065] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    M. Muhlleitner, H. Rzehak and M. Spira, SUSY-QCD corrections to MSSM Higgs boson production via gluon fusion, PoS(RADCOR2009)043 [arXiv:1001.3214] [INSPIRE].
  54. [54]
    G. Degrassi and P. Slavich, NLO QCD bottom corrections to Higgs boson production in the MSSM, JHEP 11 (2010) 044 [arXiv:1007.3465] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    R.V. Harlander, F. Hofmann and H. Mantler, Supersymmetric Higgs production in gluon fusion, JHEP 02 (2011) 055 [arXiv:1012.3361] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    R. Ellis, I. Hinchliffe, M. Soldate and J. van der Bij, Higgs decay to τ + τ : a possible signature of intermediate mass Higgs bosons at the SSC, Nucl. Phys. B 297 (1988) 221 [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    U. Baur and E. Glover, Higgs boson production at large transverse momentum in hadronic collisions, Nucl. Phys. B 339 (1990) 38 [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    S. Catani, E. D’Emilio and L. Trentadue, The gluon form-factor to higher orders: gluon gluon annihilation at small q-transverse, Phys. Lett. B 211 (1988) 335 [INSPIRE].ADSGoogle Scholar
  59. [59]
    I. Hinchliffe and S. Novaes, On the mean transverse momentum of Higgs bosons at the SSC, Phys. Rev. D 38 (1988) 3475 [INSPIRE].ADSGoogle Scholar
  60. [60]
    R.P. Kauffman, Higgs boson pT in gluon fusion, Phys. Rev. D 44 (1991) 1415 [INSPIRE].ADSGoogle Scholar
  61. [61]
    R. Kauffman, Higher order corrections to Higgs boson pT , Phys. Rev. D 45 (1992) 1512 [INSPIRE].MathSciNetADSGoogle Scholar
  62. [62]
    V. Del Duca, W. Kilgore, C. Oleari, C. Schmidt and D. Zeppenfeld, Higgs + 2 jets via gluon fusion, Phys. Rev. Lett. 87 (2001) 122001 [hep-ph/0105129] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    V. Del Duca, W. Kilgore, C. Oleari, C. Schmidt and D. Zeppenfeld, Gluon fusion contributions to H + 2 jet production, Nucl. Phys. B 616 (2001) 367 [hep-ph/0108030] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    A. Lipatov and N. Zotov, Higgs boson production at hadron colliders in the k T -factorization approach, Eur. Phys. J. C 44 (2005) 559 [hep-ph/0501172] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    D. de Florian, M. Grazzini and Z. Kunszt, Higgs production with large transverse momentum in hadronic collisions at next-to-leading order, Phys. Rev. Lett. 82 (1999) 5209 [hep-ph/9902483] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    D. de Florian and M. Grazzini, Next-to-next-to-leading logarithmic corrections at small transverse momentum in hadronic collisions, Phys. Rev. Lett. 85 (2000) 4678 [hep-ph/0008152] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    D. de Florian and M. Grazzini, The structure of large logarithmic corrections at small transverse momentum in hadronic collisions, Nucl. Phys. B 616 (2001) 247 [hep-ph/0108273] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    W.-Y. Keung and F.J. Petriello, Electroweak and finite quark-mass effects on the Higgs boson transverse momentum distribution, Phys. Rev. D 80 (2009) 013007 [arXiv:0905.2775] [INSPIRE].ADSGoogle Scholar
  69. [69]
    C. Anastasiou, S. Bucherer and Z. Kunszt, HPro: a NLO Monte-Carlo for Higgs production via gluon fusion with finite heavy quark masses, JHEP 10 (2009) 068 [arXiv:0907.2362] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    O. Brein, Electroweak and bottom quark contributions to Higgs boson plus jet production, Phys. Rev. D 81 (2010) 093006 [arXiv:1003.4438] [INSPIRE].ADSGoogle Scholar
  71. [71]
    O. Brein and W. Hollik, MSSM Higgs bosons associated with high p T jets at hadron colliders, Phys. Rev. D 68 (2003) 095006 [hep-ph/0305321] [INSPIRE].ADSGoogle Scholar
  72. [72]
    O. Brein and W. Hollik, Distributions for MSSM Higgs boson + jet production at hadron colliders, Phys. Rev. D 76 (2007) 035002 [arXiv:0705.2744] [INSPIRE].ADSGoogle Scholar
  73. [73]
    B. Field, J. Smith, M. Tejeda-Yeomans and W. van Neerven, NLO corrections to differential cross-sections for pseudoscalar Higgs boson production, Phys. Lett. B 551 (2003) 137 [hep-ph/0210369] [INSPIRE]. ADSGoogle Scholar
  74. [74]
    B. Field, S. Dawson and J. Smith, Scalar and pseudoscalar Higgs boson plus one jet production at the CERN LHC and Tevatron, Phys. Rev. D 69 (2004) 074013 [hep-ph/0311199] [INSPIRE].ADSGoogle Scholar
  75. [75]
    U. Langenegger, M. Spira, A. Starodumov and P. Trueb, SM and MSSM Higgs boson production: spectra at large transverse momentum, JHEP 06 (2006) 035 [hep-ph/0604156] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    V. Ravindran, J. Smith and W. Van Neerven, Next-to-leading order QCD corrections to differential distributions of Higgs boson production in hadron hadron collisions, Nucl. Phys. B 634 (2002) 247 [hep-ph/0201114] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    C.J. Glosser and C.R. Schmidt, Next-to-leading corrections to the Higgs boson transverse momentum spectrum in gluon fusion, JHEP 12 (2002) 016 [hep-ph/0209248] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    J. Smith and W. van Neerven, An approximation for NLO single Higgs boson inclusive transverse momentum distributions in hadron-hadron collisions, Nucl. Phys. B 720 (2005) 182 [hep-ph/0501098] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    C. Anastasiou, L.J. Dixon and K. Melnikov, NLO Higgs boson rapidity distributions at hadron colliders, Nucl. Phys. Proc. Suppl. 116 (2003) 193 [hep-ph/0211141] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    C. Anastasiou, K. Melnikov and F. Petriello, Higgs boson production at hadron colliders: differential cross sections through next-to-next-to-leading order, Phys. Rev. Lett. 93 (2004) 262002 [hep-ph/0409088] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    C. Anastasiou, K. Melnikov and F. Petriello, Fully differential Higgs boson production and the di-photon signal through next-to-next-to-leading order, Nucl. Phys. B 724 (2005) 197 [hep-ph/0501130] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [INSPIRE]. ADSCrossRefGoogle Scholar
  83. [83]
    C. Balázs and C. Yuan, Higgs boson production at the LHC with soft gluon effects, Phys. Lett. B 478 (2000) 192 [hep-ph/0001103] [INSPIRE].ADSGoogle Scholar
  84. [84]
    C. Balázs, J. Huston and I. Puljak, Higgs production: a comparison of parton showers and resummation, Phys. Rev. D 63 (2001) 014021 [hep-ph/0002032] [INSPIRE].ADSGoogle Scholar
  85. [85]
    G. Bozzi, S. Catani, D. de Florian and M. Grazzini, The q(T) spectrum of the Higgs boson at the LHC in QCD perturbation theory, Phys. Lett. B 564 (2003) 65 [hep-ph/0302104] [INSPIRE].ADSGoogle Scholar
  86. [86]
    G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Transverse-momentum resummation and the spectrum of the Higgs boson at the LHC, Nucl. Phys. B 737 (2006) 73 [hep-ph/0508068] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Higgs boson production at the LHC: transverse-momentum resummation and rapidity dependence, Nucl. Phys. B 791 (2008) 1 [arXiv:0705.3887] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    D. de Florian, G. Ferrera, M. Grazzini and D. Tommasini, Transverse-momentum resummation: Higgs boson production at the Tevatron and the LHC, JHEP 11 (2011) 064 [arXiv:1109.2109] [INSPIRE].CrossRefGoogle Scholar
  89. [89]
    G. Marchesini, et al., HERWIG: a Monte Carlo event generator for simulating hadron emission reactions with interfering gluons. Version 5.1April 1991, Comput. Phys. Commun. 67 (1992) 465 [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    G. Corcella et al., HERWIG 6.5 release note, hep-ph/0210213 [INSPIRE].
  91. [91]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    S. Frixione and B.R. Webber, The MC@NLO 2.2 event generator, hep-ph/0309186 [INSPIRE].
  97. [97]
    S. Alioli, P. Nason, C. Oleari and E. Re, NLO Higgs boson production via gluon fusion matched with shower in POWHEG, JHEP 04 (2009) 002 [arXiv:0812.0578] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    M. Bahr et al., HERWIG++ 2.3 release note, arXiv:0812.0529 [INSPIRE].
  99. [99]
    S. Frixione, F. Stoeckli, P. Torrielli and B.R. Webber, NLO QCD corrections in HERWIG++ with MC@NLO, JHEP 01 (2011) 053 [arXiv:1010.0568] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    M. Spira, HIGLU: a program for the calculation of the total Higgs production cross-section at hadron colliders via gluon fusion including QCD corrections, hep-ph/9510347 [INSPIRE].
  101. [101]
    M. Spira, HIGLU and HDECAY: programs for Higgs boson production at the LHC and Higgs boson decay widths, Nucl. Instrum. Meth. A 389 (1997) 357 [hep-ph/9610350] [INSPIRE].ADSGoogle Scholar
  102. [102]
    C. Anastasiou, S. Buehler, F. Herzog and A. Lazopoulos, Total cross-section for Higgs boson hadroproduction with anomalous standard model interactions, JHEP 12 (2011) 058 [arXiv:1107.0683] [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    J. Alwall, Q. Li and F. Maltoni, Matched predictions for Higgs production via heavy-quark loops in the SM and beyond, Phys. Rev. D 85 (2012) 014031 [arXiv:1110.1728] [INSPIRE].ADSGoogle Scholar
  104. [104]
    K. Hamilton, P. Richardson and J. Tully, A positive-weight next-to-leading order Monte Carlo simulation for Higgs boson production, JHEP 04 (2009) 116 [arXiv:0903.4345] [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    S. Frixione, A general approach to jet cross-sections in QCD, Nucl. Phys. B 507 (1997) 295 [hep-ph/9706545] [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  108. [108]
    G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high precision predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020] [INSPIRE].
  109. [109]
    B. Allanach, A. Djouadi, J. Kneur, W. Porod and P. Slavich, Precise determination of the neutral Higgs boson masses in the MSSM, JHEP 09 (2004) 044 [hep-ph/0406166] [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    B. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  111. [111]
    S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  112. [112]
    M. Frank et al., The Higgs boson masses and mixings of the complex MSSM in the Feynman-Diagrammatic approach, JHEP 02 (2007) 047 [hep-ph/0611326] [INSPIRE].ADSCrossRefGoogle Scholar
  113. [113]
    L.J. Hall, R. Rattazzi and U. Sarid, The top quark mass in supersymmetric SO(10) unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [INSPIRE].ADSGoogle Scholar
  114. [114]
    ATLAS collaboration, Search for neutral MSSM Higgs bosons decaying to tau+tau- pairs in proton-proton collisions at \( \sqrt {s} = {7 }TeV \) with the ATLAS detector, ATLAS-CONF-2011-132 (2011).Google Scholar
  115. [115]
    CMS collaboration, Search for neutral higgs bosons decaying to τ pairs in pp collisions at \( \sqrt {s} = 7eV \), PAS-HIG-11-020 (2011).Google Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • E. Bagnaschi
    • 1
    • 2
  • G. Degrassi
    • 3
  • P. Slavich
    • 2
    Email author
  • A. Vicini
    • 1
  1. 1.Dipartimento di FisicaUniversità di Milano and INFN —- Sezione di MilanoMilanoItaly
  2. 2.LPTHEParisFrance
  3. 3.Dipartimento di FisicaUniversità di Roma Tre and INFN — Sezione di Roma TreRomeItaly

Personalised recommendations