Advertisement

Journal of High Energy Physics

, 2012:84 | Cite as

Hefty MSSM-like light Higgs in extended gauge models

  • M. Hirsch
  • M. MalinskýEmail author
  • W. Porod
  • L. Reichert
  • F. Staub
Article

Abstract

It is well known that in the MSSM the lightest neutral Higgs h 0 must be, at the tree level, lighter than the Z boson and that the loop corrections shift this stringent upper bound up to about 130 GeV. Extending the MSSM gauge group in a suitable way, the new Higgs sector dynamics can push the tree-level mass of h 0 well above the tree-level MSSM limit if it couples to the new gauge sector. This effect is further pronounced at the loop level and h 0 masses in the 140GeV ballpark can be reached easily. We exemplify this for a sample setting with a low-scale U(1) R × U(1) BL gauge symmetry in which neutrino masses can be implemented via the inverse seesaw mechanism.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    ATAS collaboration, A. Nisati, Higgs searches at ATLAS, talk presented at Lepton-Photon 2011, August 22-27, Mumbai, India (2011).Google Scholar
  2. [2]
    CMS collaboration, V. Sharma, Higgs searches at CMS, talk presented at Lepton-Photon 2011, August 22-27, Mumbai, India, August (2011).Google Scholar
  3. [3]
    J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett. B 257 (1991) 83 [INSPIRE].ADSGoogle Scholar
  4. [4]
    J.R. Ellis, G. Ridolfi and F. Zwirner, On radiative corrections to supersymmetric Higgs boson masses and their implications for LEP searches, Phys. Lett. B 262 (1991) 477 [INSPIRE].ADSGoogle Scholar
  5. [5]
    Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model, Prog. Theor. Phys. 85 (1991) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m(Z)?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    R. Hempfling and A.H. Hoang, Two loop radiative corrections to the upper limit of the lightest Higgs boson mass in the minimal supersymmetric model, Phys. Lett. B 331 (1994) 99 [hep-ph/9401219] [INSPIRE].ADSGoogle Scholar
  8. [8]
    S. Heinemeyer, W. Hollik and G. Weiglein, QCD corrections to the masses of the neutral CP-even Higgs bosons in the MSSM, Phys. Rev. D 58 (1998) 091701 [hep-ph/9803277] [INSPIRE].ADSGoogle Scholar
  9. [9]
    S. Heinemeyer, W. Hollik and G. Weiglein, The masses of the neutral CP-even Higgs bosons in the MSSM: accurate analysis at the two loop level, Eur. Phys. J. C 9 (1999) 343 [hep-ph/9812472] [INSPIRE].ADSGoogle Scholar
  10. [10]
    J.R. Espinosa and R.-J. Zhang, MSSM lightest CP even Higgs boson mass to O(α s α t): the effective potential approach, JHEP 03 (2000) 026 [hep-ph/9912236] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    G. Degrassi, P. Slavich and F. Zwirner, On the neutral Higgs boson masses in the MSSM for arbitrary stop mixing, Nucl. Phys. B 611 (2001) 403 [hep-ph/0105096] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A. Brignole, G. Degrassi, P. Slavich and F. Zwirner, On the two loop sbottom corrections to the neutral Higgs boson masses in the MSSM, Nucl. Phys. B 643 (2002) 79 [hep-ph/0206101] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Brignole, G. Degrassi, P. Slavich and F. Zwirner, On the O(\( \alpha_t^2 \)) two loop corrections to the neutral Higgs boson masses in the MSSM, Nucl. Phys. B 631 (2002) 195 [hep-ph/0112177] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M.S. Carena et al., Reconciling the two loop diagrammatic and effective field theory computations of the mass of the lightest CP-even Higgs boson in the MSSM, Nucl. Phys. B 580 (2000) 29 [hep-ph/0001002] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high precision predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    B. Allanach, A. Djouadi, J. Kneur, W. Porod and P. Slavich, Precise determination of the neutral Higgs boson masses in the MSSM, JHEP 09 (2004) 044 [hep-ph/0406166] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    R. Harlander, P. Kant, L. Mihaila and M. Steinhauser, Higgs boson mass in supersymmetry to three loops, Phys. Rev. Lett. 100 (2008) 191602 [arXiv:0803.0672] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    P. Kant, R. Harlander, L. Mihaila and M. Steinhauser, Light MSSM Higgs boson mass to three-loop accuracy, JHEP 08 (2010) 104 [arXiv:1005.5709] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    G. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 65-89] [hep-ph/0406088] [INSPIRE].
  20. [20]
    U. Ellwanger, C. Hugonie and A.M. Teixeira, The next-to-minimal supersymmetric standard model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    H.E. Haber and M. Sher, Higgs mass bound in E 6 based supersymmetric theories, Phys. Rev. D 35 (1987) 2206 [INSPIRE].ADSGoogle Scholar
  22. [22]
    M. Drees, Comment onhiggs boson mass bound in E 6 based supersymmetric theories’, Phys. Rev. D 35 (1987) 2910 [INSPIRE].ADSGoogle Scholar
  23. [23]
    M. Cvetič, D.A. Demir, J. Espinosa, L. Everett and P. Langacker, Electroweak breaking and the mu problem in supergravity models with an additional U(1), Phys. Rev. D 56 (1997) 2861 [Erratum ibid. D 58 (1998) 119905] [hep-ph/9703317] [INSPIRE].
  24. [24]
    Y. Zhang, H. An, X.-d. Ji and R.N. Mohapatra, Light Higgs mass bound in SUSY left-right models, Phys. Rev. D 78 (2008) 011302 [arXiv:0804.0268] [INSPIRE].ADSGoogle Scholar
  25. [25]
    E. Ma, Exceeding the MSSM Higgs mass bound in a special class of U(1) gauge models, Phys. Lett. B 705 (2011) 320 [arXiv:1108.4029] [INSPIRE].ADSGoogle Scholar
  26. [26]
    P. Minkowski, μeγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].ADSGoogle Scholar
  27. [27]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, in KEK lectures, O. Sawada and A. Sugamoto eds., KEK, Japan (1979).Google Scholar
  28. [28]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories in Supergravity, P. van Niewenhuizen and D. Freedman eds., North Holland, The Netherlands (1979).Google Scholar
  29. [29]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J. Schechter and J. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].ADSGoogle Scholar
  31. [31]
    T. Cheng and L.-F. Li, Neutrino masses, mixings and oscillations in SU(2) × U(1) models of electroweak interactions, Phys. Rev. D 22 (1980) 2860 [INSPIRE].ADSGoogle Scholar
  32. [32]
    S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    S. Weinberg, Varieties of baryon and lepton nonconservation, Phys. Rev. D 22 (1980) 1694 [INSPIRE].ADSGoogle Scholar
  34. [34]
    R. Mohapatra and J. Valle, Neutrino mass and baryon number nonconservation in superstring models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].ADSGoogle Scholar
  35. [35]
    E.K. Akhmedov, M. Lindner, E. Schnapka and J. Valle, Left-right symmetry breaking in NJLS approach, Phys. Lett. B 368 (1996) 270 [hep-ph/9507275] [INSPIRE].ADSGoogle Scholar
  36. [36]
    M. Malinsky, J. Romao and J. Valle, Novel supersymmetric SO(10) seesaw mechanism, Phys. Rev. Lett. 95 (2005) 161801 [hep-ph/0506296] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    P. Dev and R. Mohapatra, TeV scale inverse seesaw in SO(10) and leptonic non-unitarity effects, Phys. Rev. D 81 (2010) 013001 [arXiv:0910.3924] [INSPIRE].ADSGoogle Scholar
  38. [38]
    S.K. Majee, M.K. Parida, A. Raychaudhuri and U. Sarkar, Low intermediate scales for leptogenesis in SUSY SO(10) GUTs, Phys. Rev. D 75 (2007) 075003 [hep-ph/0701109] [INSPIRE].ADSGoogle Scholar
  39. [39]
    J. Kopp, M. Lindner, V. Niro and T.E. Underwood, On the consistency of perturbativity and gauge coupling unification, Phys. Rev. D 81 (2010) 025008 [arXiv:0909.2653] [INSPIRE].ADSGoogle Scholar
  40. [40]
    V. De Romeri, M. Hirsch and M. Malinsky, Soft masses in SUSY SO(10) GUTs with low intermediate scales, Phys. Rev. D 84 (2011) 053012 [arXiv:1107.3412] [INSPIRE].ADSGoogle Scholar
  41. [41]
    LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3, OPAL collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].
  42. [42]
    F. del Aguila, G. Coughlan and M. Quirós, Gauge coupling renormalization with several U(1) factors, Nucl. Phys. B 307 (1988) 633 [Erratum ibid. B 312 (1989) 751] [INSPIRE].
  43. [43]
    R.M. Fonseca, M. Malinsky, W. Porod and F. Staub, Running soft parameters in SUSY models with multiple U(1) gauge factors, Nucl. Phys. B 854 (2012) 28 [arXiv:1107.2670] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    M. Hirsch, L. Reichert, W. Porod, F. Staub, in preparation.Google Scholar
  45. [45]
    B. Allanach et al., SUSY Les Houches Accord 2, Comput. Phys. Commun. 180 (2009) 8 [arXiv:0801.0045] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    F. Staub, SARAH, arXiv:0806.0538 [INSPIRE].
  47. [47]
    F. Staub, Automatic calculation of supersymmetric renormalization group equations and self energies, Comput. Phys. Commun. 182 (2011) 808 [arXiv:1002.0840] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  48. [48]
    D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-J. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    Particle Data Group, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSGoogle Scholar
  50. [50]
    J. Erler, P. Langacker, S. Munir and E. Rojas, Z bosons at colliders: a bayesian viewpoint, JHEP 11 (2011) 076 [arXiv:1103.2659] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    W. Porod and F. Staub, SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM, arXiv:1104.1573 [INSPIRE].
  53. [53]
    F. Staub, T. Ohl, W. Porod and C. Speckner, A tool box for implementing supersymmetric models, arXiv:1109.5147 [INSPIRE].
  54. [54]
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds: confronting arbitrary Higgs sectors with exclusion bounds from LEP and the Tevatron, Comput. Phys. Commun. 181 (2010) 138 [arXiv:0811.4169] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  55. [55]
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds 2.0.0: confronting neutral and charged Higgs sector predictions with exclusion bounds from LEP and the Tevatron, Comput. Phys. Commun. 182 (2011) 2605 [arXiv:1102.1898] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    A. Elsayed, S. Khalil and S. Moretti, Higgs mass corrections in the SUSY B-L model with inverse seesaw, arXiv:1106.2130 [INSPIRE].
  57. [57]
    MEG collaboration, J. Adam et al., New limit on the lepton-flavour violating decay μ +e +γ, Phys. Rev. Lett. 107 (2011) 171801 [arXiv:1107.5547] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    A. Bartl, W. Majerotto, W. Porod and D. Wyler, Effect of supersymmetric phases on lepton dipole moments and rare lepton decays, Phys. Rev. D 68 (2003) 053005 [hep-ph/0306050] [INSPIRE].ADSGoogle Scholar
  59. [59]
    S. Antusch, E. Arganda, M. Herrero and A. Teixeira, Impact of θ 13 on lepton flavour violating processes within SUSY seesaw, JHEP 11 (2006) 090 [hep-ph/0607263] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    J. Esteves, J. Romao, M. Hirsch, F. Staub and W. Porod, Supersymmetric type-III seesaw: lepton flavour violating decays and dark matter, Phys. Rev. D 83 (2011) 013003 [arXiv:1010.6000] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • M. Hirsch
    • 1
  • M. Malinský
    • 1
    Email author
  • W. Porod
    • 1
  • L. Reichert
    • 1
    • 2
  • F. Staub
    • 2
    • 3
  1. 1.AHEP Group, Instituto de Física Corpuscular — C.S.I.C./Universitat de ValènciaValènciaSpain
  2. 2.Institut für Theoretische Physik und AstronomieUniversität WürzburgWürzburgGermany
  3. 3.Physikalisches Institut der Universität BonnBonnGermany

Personalised recommendations