Advertisement

Journal of High Energy Physics

, 2012:73 | Cite as

A transfer matrix method for resonances in Randall-Sundrum models II: the deformed case

  • R. R. Landim
  • G. Alencar
  • M. O. Tahim
  • R. N. Costa Filho
Article

Abstract

Here we consider resonances of the Gauge, Gravity and Spinor fields in RandallSundrum-like scenarios. We consider membranes that are generated by a class of topological defects that are deformed domain walls obtained from other previously known ones. They are obtained by a deformation procedure generate different potentials to the associated Schrödinger-like equation. The resonance spectra are calculated numerically using the method of Transfer Matrix developed by the authors and presented in JHEP 1108 (2011) 071. The new deformed defects change the resonances spectra of all fields considered and the associated phenomenology as well.

Keywords

Large Extra Dimensions Field Theories in Higher Dimensions 

References

  1. [1]
    T. Appelquist, A. Chodos and P.G.O. Freund, Introduction tomodern Kaluza Klein theories’, in Modern Kaluza-Klein theories, T. Appelquist et al. eds., Front. Phys. 65, Addison-Wesley, Menlo Park U.S.A. (1987), pg. 1.Google Scholar
  2. [2]
    J. Polchinski, String theory. Vol. 1: an introduction to the bosonic string, Cambridge University Press, Cambridge U.K. (1998).Google Scholar
  3. [3]
    J. Polchinski, String theory. Vol. 2: superstring theory and beyond, Cambridge University Press, Cambridge U.K. (1998).Google Scholar
  4. [4]
    N. Berkovits, Super Poincaré covariant quantization of the superstring, JHEP 04 (2000) 018 [hep-th/0001035] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. [6]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. [7]
    C. Csáki, J. Erlich and J. Terning, The effective Lagrangian in the Randall-Sundrum model and electroweak physics, Phys. Rev. D 66 (2002) 064021 [hep-ph/0203034] [INSPIRE].ADSGoogle Scholar
  8. [8]
    C. Csáki, M. Graesser, L. Randall and J. Terning, Cosmology of brane models with radion stabilization, Phys. Rev. D 62 (2000) 045015 [hep-ph/9911406] [INSPIRE].ADSGoogle Scholar
  9. [9]
    C. Csáki, M. Graesser, C.F. Kolda and J. Terning, Cosmology of one extra dimension with localized gravity, Phys. Lett. B 462 (1999) 34 [hep-ph/9906513] [INSPIRE].ADSGoogle Scholar
  10. [10]
    A. Kehagias and K. Tamvakis, Localized gravitons, gauge bosons and chiral fermions in smooth spaces generated by a bounce, Phys. Lett. B 504 (2001) 38 [hep-th/0010112] [INSPIRE].MathSciNetADSGoogle Scholar
  11. [11]
    G. Kim and G.B. Arnold, Theoretical study of tunneling phenomena in double-barrier quantum-well heterostructures, Phys. Rev. B 38 (1988) 3252.ADSGoogle Scholar
  12. [12]
    R. Renan, V.N. Freire, M.M. Auto and G.A. Farias, Transmission coefficient of electrons through a single graded barrier, Phys. Rev. B 48 (1993) 8446.ADSGoogle Scholar
  13. [13]
    R.R.L. de Carvalho, V.N. Freire, M.M. Auto and G.A. Farias, Transmission in symmetrical GaAs/Al x Ga 1−x As double barrier with compositionally nonabrupt interfaces, Superlattices Microstruct. 15 (1994) 203.ADSCrossRefGoogle Scholar
  14. [14]
    Y. Ando and T. Itoh, Calculation of transmission tunneling current across arbitrary potential barriers, J. Appl. Phys. 61 (1987) 1497.ADSCrossRefGoogle Scholar
  15. [15]
    B. Mukhopadhyaya, S. Sen, S. Sen and S. SenGupta, Bulk Kalb-Ramond field in Randall-Sundrum scenario, Phys. Rev. D 70 (2004) 066009 [hep-th/0403098] [INSPIRE].ADSGoogle Scholar
  16. [16]
    A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, String axiverse, Phys. Rev. D 81 (2010) 123530 [arXiv:0905.4720] [INSPIRE].ADSGoogle Scholar
  17. [17]
    P. Svrček and E. Witten, Axions in string theory, JHEP 06 (2006) 051 [hep-th/0605206] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    C. Germani and A. Kehagias, Higher-spin fields in braneworlds, Nucl. Phys. B 725 (2005) 15 [hep-th/0411269] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    B. Mukhopadhyaya, S. Sen and S. SenGupta, Bulk antisymmetric tensor fields in a Randall-Sundrum model, Phys. Rev. D 76 (2007) 121501 [arXiv:0709.3428] [INSPIRE].MathSciNetADSGoogle Scholar
  20. [20]
    G. De Risi, Bouncing cosmology from Kalb-Ramond braneworld, Phys. Rev. D 77 (2008) 044030 [arXiv:0711.3781] [INSPIRE].ADSGoogle Scholar
  21. [21]
    B. Mukhopadhyaya, S. Sen and S. SenGupta, A Randall-Sundrum scenario with bulk dilaton and torsion, Phys. Rev. D 79 (2009) 124029 [arXiv:0903.0722] [INSPIRE].ADSGoogle Scholar
  22. [22]
    G. Alencar, M. Tahim, R. Landim, C. Muniz and R. Costa Filho, Bulk antisymmetric tensor fields coupled to a dilaton in a Randall-Sundrum model, Phys. Rev. D 82 (2010) 104053 [arXiv:1005.1691] [INSPIRE].ADSGoogle Scholar
  23. [23]
    A. Chamblin, C. Csáki, J. Erlich and T.J. Hollowood, Black diamonds at brane junctions, Phys. Rev. D 62 (2000) 044012 [hep-th/0002076] [INSPIRE].ADSGoogle Scholar
  24. [24]
    C. Csáki and Y. Shirman, Brane junctions in the Randall-Sundrum scenario, Phys. Rev. D 61 (2000) 024008 [hep-th/9908186] [INSPIRE].ADSGoogle Scholar
  25. [25]
    D. Bazeia, A. Gomes, L. Losano and R. Menezes, Braneworld models of scalar fields with generalized dynamics, Phys. Lett. B 671 (2009) 402 [arXiv:0808.1815] [INSPIRE].MathSciNetADSGoogle Scholar
  26. [26]
    M. Gremm, Four-dimensional gravity on a thick domain wall, Phys. Lett. B 478 (2000) 434 [hep-th/9912060] [INSPIRE].ADSGoogle Scholar
  27. [27]
    Y. Brihaye, T. Delsate, N. Sawado and Y. Kodama, Inflating baby-Skyrme branes in six dimensions, Phys. Rev. D 82 (2010) 106002 [arXiv:1007.0736] [INSPIRE].ADSGoogle Scholar
  28. [28]
    Y. Brihaye and T. Delsate, Inflating brane inside hyper-spherically symmetric defects, Class. Quant. Grav. 24 (2007) 1279 [gr-qc/0605039] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  29. [29]
    Y. Brihaye, T. Delsate and B. Hartmann, Inflating branes inside Abelian strings, Phys. Rev. D 74 (2006) 044015 [hep-th/0602172] [INSPIRE].MathSciNetADSGoogle Scholar
  30. [30]
    D. Bazeia, L. Losano and J. Malbouisson, Deformed defects, Phys. Rev. D 66 (2002) 101701 [hep-th/0209027] [INSPIRE].ADSGoogle Scholar
  31. [31]
    O. DeWolfe, D. Freedman, S. Gubser and A. Karch, Modeling the fifth-dimension with scalars and gravity, Phys. Rev. D 62 (2000) 046008 [hep-th/9909134] [INSPIRE].MathSciNetADSGoogle Scholar
  32. [32]
    K. Skenderis and P.K. Townsend, Gravitational stability and renormalization group flow, Phys. Lett. B 468 (1999) 46 [hep-th/9909070] [INSPIRE].MathSciNetADSGoogle Scholar
  33. [33]
    Y. Brihaye and T. Delsate, Remarks on bell-shaped lumps: stability and fermionic modes, Phys. Rev. D 78 (2008) 025014 [arXiv:0803.1458] [INSPIRE].ADSGoogle Scholar
  34. [34]
    D. Bazeia, A. Gomes and L. Losano, Gravity localization on thick branes: a numerical approach, Int. J. Mod. Phys. A 24 (2009) 1135 [arXiv:0708.3530] [INSPIRE].ADSGoogle Scholar
  35. [35]
    D. Bazeia, F. Brito and A. Gomes, Locally localized gravity and geometric transitions, JHEP 11 (2004) 070 [hep-th/0411088] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    D. Bazeia, C. Furtado and A. Gomes, Brane structure from scalar field in warped space-time, JCAP 02 (2004) 002 [hep-th/0308034] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    H. Christiansen, M. Cunha and M. Tahim, Exact solutions for a Maxwell-Kalb-Ramond action with dilaton: localization of massless and massive modes in a sine-Gordon brane-world, Phys. Rev. D 82 (2010) 085023 [arXiv:1006.1366] [INSPIRE].ADSGoogle Scholar
  38. [38]
    G. Alencar, R. Landim, M. Tahim, C. Muniz and R. Costa Filho, Antisymmetric tensor fields in Randall Sundrum thick branes, Phys. Lett. B 693 (2010) 503 [arXiv:1008.0678] [INSPIRE].ADSGoogle Scholar
  39. [39]
    R. Landim, G. Alencar, M. Tahim, M.A. Gomes and R. Filho, Dual spaces of resonance in thick p-branes, arXiv:1010.1548 [INSPIRE].
  40. [40]
    G. Alencar et al., Antisymmetric tensor fields in codimension two brane-world, Europhys. Lett. 93 (2011) 10003 [arXiv:1009.1183] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    R. Fonseca, F. Brito and L. Losano, 4D gravity on a non-BPS bent dilatonic brane, JCAP 01 (2012) 032 [arXiv:1106.5719] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    D. Bazeia and L. Losano, Deformed defects with applications to braneworlds, Phys. Rev. D 73 (2006) 025016 [hep-th/0511193] [INSPIRE].MathSciNetADSGoogle Scholar
  43. [43]
    Y.-X. Liu, J. Yang, Z.-H. Zhao, C.-E. Fu and Y.-S. Duan, Fermion localization and resonances on a de Sitter thick brane, Phys. Rev. D 80 (2009) 065019 [arXiv:0904.1785] [INSPIRE].ADSGoogle Scholar
  44. [44]
    Z.-H. Zhao, Y.-X. Liu and H.-T. Li, Fermion localization on asymmetric two-field thick branes, Class. Quant. Grav. 27 (2010) 185001 [arXiv:0911.2572] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    J. Liang and Y.-S. Duan, Localization of matter and fermion resonances on double walls, Phys. Lett. B 681 (2009) 172 [INSPIRE].ADSGoogle Scholar
  46. [46]
    Z.-H. Zhao, Y.-X. Liu, H.-T. Li and Y.-Q. Wang, Effects of the variation of mass on fermion localization and resonances on thick branes, Phys. Rev. D 82 (2010) 084030 [arXiv:1004.2181] [INSPIRE].ADSGoogle Scholar
  47. [47]
    Z.-H. Zhao, Y.-X. Liu, Y.-Q. Wang and H.-T. Li, Effects of temperature on thick branes and the fermion (quasi-)localization, JHEP 06 (2011) 045 [arXiv:1102.4894] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    H.-T. Li, Y.-X. Liu, Z.-H. Zhao and H. Guo, Fermion resonances on a thick brane with a piecewise warp factor, Phys. Rev. D 83 (2011) 045006 [arXiv:1006.4240] [INSPIRE].ADSGoogle Scholar
  49. [49]
    H. Guo, Y.-X. Liu, Z.-H. Zhao and F.-W. Chen, Thick branes with a non-minimally coupled bulk-scalar field, arXiv:1106.5216 [INSPIRE].
  50. [50]
    Y.-X. Liu, Y. Zhong, Z.-H. Zhao and H.-T. Li, Domain wall brane in squared curvature gravity, JHEP 06 (2011) 135 [arXiv:1104.3188] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    Y.-X. Liu, H.-T. Li, Z.-H. Zhao, J.-X. Li and J.-R. Ren, Fermion resonances on multi-field thick branes, JHEP 10 (2009) 091 [arXiv:0909.2312] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    L. Castro, Fermion localization on two-field thick branes, Phys. Rev. D 83 (2011) 045002 [arXiv:1008.3665] [INSPIRE].ADSGoogle Scholar
  53. [53]
    R. Correa, A. de Souza Dutra and M. Hott, Fermion localization on degenerate and critical branes, Class. Quant. Grav. 28 (2011) 155012 [arXiv:1011.1849] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    L.B. Castro and L.A. Meza, Fermion localization on branes with generalized dynamics, arXiv:1011.5872 [INSPIRE].
  55. [55]
    A. Chumbes, A. Vasquez and M. Hott, Fermion localization on a split brane, Phys. Rev. D 83 (2011) 105010 [arXiv:1012.1480] [INSPIRE].ADSGoogle Scholar
  56. [56]
    L.B. Castro and L.A. Meza, Effect of the variation of mass on fermion localization on thick branes, arXiv:1104.5402 [INSPIRE].
  57. [57]
    R. Landim, G. Alencar, M. Tahim and R. Filho, A transfer matrix method for resonances in Randall-Sundrum models, JHEP 08 (2011) 071 [arXiv:1105.5573] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    C. Csáki, J. Erlich and T.J. Hollowood, Quasilocalization of gravity by resonant modes, Phys. Rev. Lett. 84 (2000) 5932 [hep-th/0002161] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  59. [59]
    C. Csáki, J. Erlich, T.J. Hollowood and Y. Shirman, Universal aspects of gravity localized on thick branes, Nucl. Phys. B 581 (2000) 309 [hep-th/0001033] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • R. R. Landim
    • 1
  • G. Alencar
    • 2
  • M. O. Tahim
    • 2
  • R. N. Costa Filho
    • 1
  1. 1.Departamento de FísicaUniversidade Federal do CearáFortalezaBrazil
  2. 2.Universidade Estadual do Ceará, Faculdade de Educação, Ciências e Letras do Sertão Central-RQuixadáBrazil

Personalised recommendations