Advertisement

Journal of High Energy Physics

, 2012:71 | Cite as

On invariant structures of black hole charges

  • Sergio Ferrara
  • Alessio MarraniEmail author
  • Armen Yeranyan
Open Access
Article

Abstract

We study “minimal degree” complete bases of duality- and “horizontal”- invariant homogeneous polynomials in the flux representation of two-centered black hole solutions in two classes of D = 4 Einstein supergravity models with symmetric vector multiplets’ scalar manifolds. Both classes exhibit an SL(2, \( \mathbb{R} \)) “horizontal” symmetry which mixes the two centers. The first class encompasses \( \mathcal{N} = {2} \) and \( \mathcal{N} = {4} \) matter-coupled theories, with semisimple U-duality given by SL(2, \( \mathbb{R} \)) × SO(m,n); the analysis is carried out in the so-called Calabi-Vesentini symplectic frame (exhibiting maximal manifest covariance) and until order six in the fluxes included. The second class, exhibiting a non-trivial “horizontal” stabilizer SO(2), includes \( \mathcal{N} = {2} \) minimally coupled and \( \mathcal{N} = 3 \) matter coupled theories, with U-duality given by the pseudounitary group U(r,s) (related to complex flux representations). Finally, we comment on the formulation of special Kähler geometry in terms of “generalized” groups of type E 7.

Keywords

Black Holes in String Theory Supergravity Models Extended Supersymmetry 

References

  1. [1]
    A. Sen, Walls of marginal stability and dyon spectrum in \( \mathcal{N} = {4} \) supersymmetric string theories, JHEP 05 (2007) 039 [hep-th/0702141] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    A. Sen, Two centered black holes and \( \mathcal{N} = {4} \) dyon spectrum, JHEP 09 (2007) 045 [arXiv:0705.3874] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A. Sen, \( \mathcal{N} = {8} \) dyon partition function and walls of marginal stability, JHEP 07 (2008) 118 [arXiv:0803.1014] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    A. Sen, Wall crossing formula for \( \mathcal{N} = {4} \) dyons: a macroscopic derivation, JHEP 07 (2008) 078 [arXiv:0803.3857] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J.R. David, On walls of marginal stability in \( \mathcal{N} = {2} \) string theories, JHEP 08 (2009) 054 [arXiv:0905.4115] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    E. Cremmer and B. Julia, The \( \mathcal{N} = 8 \) supergravity theory. 1. The Lagrangian, Phys. Lett. B 80 (1978) 48 [INSPIRE].ADSGoogle Scholar
  7. [7]
    E. Cremmer and B. Julia, The SO(8) supergravity, Nucl. Phys. B 159 (1979) 141 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    C. Hull and P. Townsend, Unity of superstring dualities, Nucl. Phys. B 438 (1995) 109 [hep-th/9410167] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    S. Ferrara, A. Marrani, E. Orazi, R. Stora and A. Yeranyan, Two-center black holes duality-invariants for STU model and its lower-rank descendants, J. Math. Phys. 52 (2011) 062302 [arXiv:1011.5864] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    L. Andrianopoli, R. D’Auria, S. Ferrara, A. Marrani and M. Trigiante, Two-centered magical charge orbits, JHEP 04 (2011) 041 [arXiv:1101.3496] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A. Ceresole, S. Ferrara, A. Marrani and A. Yeranyan, Small black hole constituents and horizontal symmetry, JHEP 06 (2011) 078 [arXiv:1104.4652] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    L. Andrianopoli et al., \( \mathcal{N} = {2} \) supergravity and \( \mathcal{N} = {2} \) super Yang-Mills theory on general scalar manifolds: symplectic covariance, gaugings and the momentum map, J. Geom. Phys. 23 (1997) 111 [hep-th/9605032] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. [13]
    L. Borsten, M. Duff, S. Ferrara, A. Marrani and W. Rubens, Small orbits, arXiv:1108.0424 [INSPIRE].
  14. [14]
    L. Borsten, M. Duff, S. Ferrara, A. Marrani and W. Rubens, Explicit orbit classification of reducible Jordan algebras and Freudenthal triple systems, arXiv:1108.0908 [INSPIRE].
  15. [15]
    E. Calabi and E. Vesentini, On compact, locally symmetric Kähler manifolds, Ann. Math. 71 (1960) 472.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    A. Ceresole, R. D’Auria, S. Ferrara and A. Van Proeyen, Duality transformations in supersymmetric Yang-Mills theories coupled to supergravity, Nucl. Phys. B 444 (1995) 92 [hep-th/9502072] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Cvetič and D. Youm, Dyonic BPS saturated black holes of heterotic string on a six torus, Phys. Rev. D 53 (1996) 584 [hep-th/9507090] [INSPIRE].ADSGoogle Scholar
  18. [18]
    M. Duff, J.T. Liu and J. Rahmfeld, Four-dimensional string-string-string triality, Nucl. Phys. B 459 (1996) 125 [hep-th/9508094] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    M. Cvetič and A.A. Tseytlin, General class of BPS saturated dyonic black holes as exact superstring solutions, Phys. Lett. B 366 (1996) 95 [hep-th/9510097] [INSPIRE].ADSGoogle Scholar
  20. [20]
    M. Cvetič and A.A. Tseytlin, Solitonic strings and BPS saturated dyonic black holes, Phys. Rev. D 53 (1996) 5619 [Erratum ibid. D 55 (1997) 3907] [hep-th/9512031] [INSPIRE].
  21. [21]
    A. Marrani, E. Orazi and F. Riccioni, Exceptional reductions, J. Phys. A 44 (2011) 155207 [arXiv:1012.5797] [INSPIRE].MathSciNetADSGoogle Scholar
  22. [22]
    S. Ferrara and J.M. Maldacena, Branes, central charges and U duality invariant BPS conditions, Class. Quant. Grav. 15 (1998) 749 [hep-th/9706097] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. [23]
    L. Andrianopoli, R. D’Auria and S. Ferrara, U invariants, black hole entropy and fixed scalars, Phys. Lett. B 403 (1997) 12 [hep-th/9703156] [INSPIRE].MathSciNetADSGoogle Scholar
  24. [24]
    B.L. Cerchiai, S. Ferrara, A. Marrani and B. Zumino, Duality, entropy and ADM mass in supergravity, Phys. Rev. D 79 (2009) 125010 [arXiv:0902.3973] [INSPIRE].MathSciNetADSGoogle Scholar
  25. [25]
    L. Andrianopoli, R. D’Auria, S. Ferrara and M. Trigiante, Fake superpotential for large and small extremal black holes, JHEP 08 (2010) 126 [arXiv:1002.4340] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    S. Ferrara, A. Marrani and E. Orazi, Split attractor flow in \( \mathcal{N} = {2} \) minimally coupled supergravity, Nucl. Phys. B 846 (2011) 512 [arXiv:1010.2280] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    J. Dixmier, On the projective invariants of quartic plane curves, Adv. Math. 64 (1987) 279.MathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    S. Ferrara, A. Marrani and A. Yeranyan, Freudenthal duality and generalized special geometry, Phys. Lett. B 701 (2011) 640 [arXiv:1102.4857] [INSPIRE].MathSciNetADSGoogle Scholar
  29. [29]
    R.B. Brown, Groups of type E 7, J. Reine Angew. Math. 236 (1969) 79.MathSciNetzbMATHGoogle Scholar
  30. [30]
    J. Luciani, Coupling of O(2) supergravity with several vector multiplets, Nucl. Phys. B 132 (1978) 325 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    S. Ferrara, A. Gnecchi and A. Marrani, D = 4 attractors, effective horizon radius and fake supergravity, Phys. Rev. D 78 (2008) 065003 [arXiv:0806.3196] [INSPIRE].MathSciNetADSGoogle Scholar
  32. [32]
    L. Castellani et al., The complete \( \mathcal{N} = {3} \) matter coupled supergravity, Nucl. Phys. B 268 (1986) 317 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    M. Duff and S. Ferrara, Generalized mirror symmetry and trace anomalies, Class. Quant. Grav. 28 (2011) 065005 [arXiv:1009.4439] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    S. Ferrara and A. Marrani, Matrix norms, BPS bounds and marginal stability in \( \mathcal{N} = {8} \) supergravity, JHEP 12 (2010) 038 [arXiv:1009.3251] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    S. Ferrara, J. Scherk and B. Zumino, Algebraic properties of extended supergravity theories, Nucl. Phys. B 121 (1977) 393 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    L. Andrianopoli, R. D’Auria and S. Ferrara, U invariants, black hole entropy and fixed scalars, Phys. Lett. B 403 (1997) 12 [hep-th/9703156] [INSPIRE].MathSciNetADSGoogle Scholar
  37. [37]
    E. Cremmer et al., Vector multiplets coupled to \( \mathcal{N} = {2} \) supergravity: superHiggs effect, flat potentials and geometric structure, Nucl. Phys. B 250 (1985) 385 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    E. Cremmer and A. Van Proeyen, Classification of Kähler manifolds in \( \mathcal{N} = {2} \) vector multiplet supergravity couplings, Class. Quant. Grav. 2 (1985) 445 [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  39. [39]
    A. Strominger, Special geometry, Commun. Math. Phys. 133 (1990) 163 [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  40. [40]
    A. Ceresole, R. D’Auria and S. Ferrara, The symplectic structure of \( \mathcal{N} = {2} \) supergravity and its central extension, Nucl. Phys. Proc. Suppl. 46 (1996) 67 [hep-th/9509160] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  41. [41]
    L. Castellani, R. D’Auria and S. Ferrara, Special geometry without special coordinates, Class. Quant. Grav. 7 (1990) 1767 [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  42. [42]
    L. Castellani, R. D’Auria and S. Ferrara, Special Kähler geometry: an intrinsic formulation from \( \mathcal{N} = {2} \) space-time supersymmetry, Phys. Lett. B 241 (1990) 57 [INSPIRE].MathSciNetADSGoogle Scholar
  43. [43]
    B. Craps, F. Roose, W. Troost and A. Van Proeyen, What is special Kähler geometry?, Nucl. Phys. B 503 (1997) 565 [hep-th/9703082] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    S. Bellucci, A. Marrani and R. Roychowdhury, On quantum special Kähler geometry, Int. J. Mod. Phys. A 25 (2010) 1891 [arXiv:0910.4249] [INSPIRE].MathSciNetADSGoogle Scholar
  45. [45]
    S. Bellucci, S. Ferrara, R. Kallosh and A. Marrani, Extremal black hole and flux vacua attractors, Lect. Notes Phys. 755 (2008) 115 [arXiv:0711.4547] [INSPIRE].MathSciNetADSGoogle Scholar
  46. [46]
    V.G. Kac, Some remarks on nilpotent orbits, J. Algebra 64 (1980) 190.MathSciNetzbMATHCrossRefGoogle Scholar
  47. [47]
    S. Cecotti, S. Ferrara and L. Girardello, Geometry of type II superstrings and the moduli of superconformal field theories, Int. J. Mod. Phys. A 4 (1989) 2475 [INSPIRE].MathSciNetADSGoogle Scholar
  48. [48]
    S. Ferrara and A. Marrani, Symmetric spaces in supergravity, in “Symmetry in Mathematics and Physics”, D. Babbitt, V. Vyjayanthi and R. Fioresi eds., Contemporary Mathematics 490, American Mathematical Society, Providence U.S.A. (2009) [arXiv:0808.3567] [INSPIRE].
  49. [49]
    M. Günaydin, G. Sierra and P. Townsend, Exceptional supergravity theories and the MAGIC square, Phys. Lett. B 133 (1983) 72 [INSPIRE].ADSGoogle Scholar
  50. [50]
    M. Günaydin, G. Sierra and P. Townsend, The geometry of \( \mathcal{N} = {2} \) Maxwell-Einstein supergravity and Jordan algebras, Nucl. Phys. B 242 (1984) 244 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    B. de Wit and H. Nicolai, Extended supergravity with local SO(5) invariance, Nucl. Phys. B 188 (1981) 98 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    A. Ceresole, R. D’Auria and T. Regge, Duality group for Calabi-Yau 2 moduli space, Nucl. Phys. B 414 (1994) 517 [hep-th/9307151] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    L.J. Dixon, V. Kaplunovsky and J. Louis, On effective field theories describing (2,2) vacua of the heterotic string, Nucl. Phys. B 329 (1990) 27 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    S. Ferrara and C. Kounnas, Extended supersymmetry in four-dimensional type II strings, Nucl. Phys. B 328 (1989) 406 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    S. Ferrara and P. Fré, Type II superstrings on twisted group manifolds and their heterotic counterparts, Int. J. Mod. Phys. A 5 (1990) 989 [INSPIRE].ADSGoogle Scholar
  56. [56]
    A. Dabholkar and J.A. Harvey, String islands, JHEP 02 (1999) 006 [hep-th/9809122] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    C. Kounnas and A. Kumar, BPS states in \( \mathcal{N} = {3} \) superstrings, Nucl. Phys. B 511 (1998) 216 [hep-th/9709061] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    A.R. Frey and J. Polchinski, \( \mathcal{N} = {3} \) warped compactifications, Phys. Rev. D 65 (2002) 126009 [hep-th/0201029] [INSPIRE].MathSciNetADSGoogle Scholar
  59. [59]
    S. Ferrara and S. Sabharwal, Quaternionic manifolds for type II superstring vacua of Calabi-Yau spaces, Nucl. Phys. B 332 (1990) 317 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  60. [60]
    B. de Wit, F. Vanderseypen and A. Van Proeyen, Symmetry structure of special geometries, Nucl. Phys. B 400 (1993) 463 [hep-th/9210068] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    J. Bagger and E. Witten, Matter couplings in \( \mathcal{N} = {2} \) supergravity, Nucl. Phys. B 222 (1983) 1 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Sergio Ferrara
    • 1
    • 2
    • 3
  • Alessio Marrani
    • 1
    Email author
  • Armen Yeranyan
    • 2
    • 4
  1. 1.Physics Department, Theory UnitCERNGeneva 23Switzerland
  2. 2.INFN — Laboratori Nazionali di FrascatiFrascatiItaly
  3. 3.Department of Physics and AstronomyUniversity of CaliforniaLos AngelesU.S.A.
  4. 4.Department of PhysicsYerevan State UniversityYerevanArmenia

Personalised recommendations