Journal of High Energy Physics

, 2012:64

Vector-axial vector correlators in weak electric field and the holographic dynamics of the chiral condensate

Open Access
Article

Abstract

The transverse part of the vector-axial vector flavor current correlator in the presence of weak external electric field is studied using holography. The correlator is calculated using a bottom-up model proposed recently, that includes both contributions of higher string states and the non-linear dynamics of the chiral condensate. It is shown that for low momenta the result agrees with the relation proposed by Son and Yamamoto motivated by a simpler holographic model. This suggests that the Son-Yamamoto relation is generically valid in the IR of models with the proper chiral symmetry breaking pattern.

Keywords

Gauge-gravity correspondence Spontaneous Symmetry Breaking Tachyon Condensation QCD 

References

  1. [1]
    S.L. Adler and W.A. Bardeen, Absence of higher order corrections in the anomalous axial vector divergence equation, Phys. Rev. 182 (1969) 1517 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M. Knecht, S. Peris, M. Perrottet and E. De Rafael, Electroweak hadronic contributions to the muon (g-2), JHEP 11 (2002) 003 [hep-ph/0205102] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A. Czarnecki, W.J. Marciano and A. Vainshtein, Refinements in electroweak contributions to the muon anomalous magnetic moment, Phys. Rev. D 67 (2003) 073006 [Erratum ibid. D 73 (2006) 119901] [hep-ph/0212229] [INSPIRE].ADSGoogle Scholar
  4. [4]
    A. Vainshtein, Perturbative and nonperturbative renormalization of anomalous quark triangles, Phys. Lett. B 569 (2003) 187 [hep-ph/0212231] [INSPIRE].ADSGoogle Scholar
  5. [5]
    M. Knecht, S. Peris, M. Perrottet and E. de Rafael, New nonrenormalization theorems for anomalous three point functions, JHEP 03 (2004) 035 [hep-ph/0311100] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    D.T. Son and N. Yamamoto, Holography and anomaly matching for resonances, arXiv:1010.0718 [INSPIRE].
  7. [7]
    D. Son and M. Stephanov, QCD and dimensional deconstruction, Phys. Rev. D 69 (2004) 065020 [hep-ph/0304182] [INSPIRE].ADSGoogle Scholar
  8. [8]
    M. Knecht, S. Peris and E. de Rafael, On anomaly matching and holography, JHEP 10 (2011) 048 [arXiv:1101.0706] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  10. [10]
    U. Gürsoy and E. Kiritsis, Exploring improved holographic theories for QCD: Part I, JHEP 02 (2008) 032 [arXiv:0707.1324] [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    U. Gürsoy, E. Kiritsis and F. Nitti, Exploring improved holographic theories for QCD: Part II, JHEP 02 (2008) 019 [arXiv:0707.1349] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    E. Kiritsis, Dissecting the string theory dual of QCD, Fortsch. Phys. 57 (2009) 396 [arXiv:0901.1772] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  13. [13]
    U. Gürsoy, E. Kiritsis, L. Mazzanti, G. Michalogiorgakis and F. Nitti, Improved holographic QCD, Lect. Notes Phys. 828 (2011) 79 [arXiv:1006.5461] [INSPIRE].CrossRefGoogle Scholar
  14. [14]
    A. Sen, Tachyon dynamics in open string theory, Int. J. Mod. Phys. A 20 (2005) 5513 [hep-th/0410103] [INSPIRE].ADSGoogle Scholar
  15. [15]
    R. Casero, E. Kiritsis and A. Paredes, Chiral symmetry breaking as open string tachyon condensation, Nucl. Phys. B 787 (2007) 98 [hep-th/0702155] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    I. Iatrakis, E. Kiritsis and A. Paredes, An AdS/QCD model from Sens tachyon action, Phys. Rev. D 81 (2010) 115004 [arXiv:1003.2377] [INSPIRE].ADSGoogle Scholar
  17. [17]
    I. Iatrakis, E. Kiritsis and A. Paredes, An AdS/QCD model from tachyon condensation: II, JHEP 11 (2010) 123 [arXiv:1010.1364] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    O. Aharony and D. Kutasov, Holographic duals of long open strings, Phys. Rev. D 78 (2008) 026005 [arXiv:0803.3547] [INSPIRE].MathSciNetADSGoogle Scholar
  19. [19]
    J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons, Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    L. Da Rold and A. Pomarol, Chiral symmetry breaking from five dimensional spaces, Nucl. Phys. B 721 (2005) 79 [hep-ph/0501218] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A. Karch, E. Katz, D.T. Son and M.A. Stephanov, Linear confinement and AdS/QCD, Phys. Rev. D 74 (2006) 015005 [hep-ph/0602229] [INSPIRE].ADSGoogle Scholar
  22. [22]
    L. Cappiello, O. Catà and G. D’Ambrosio, Antisymmetric tensors in holographic approaches to QCD, Phys. Rev. D 82 (2010) 095008 [arXiv:1004.2497] [INSPIRE].ADSGoogle Scholar
  23. [23]
    S. Domokos, J. Harvey and A. Royston, Completing the framework of AdS/QCD: h 1 /b 1 mesons and excited ω/ρs, JHEP 05 (2011) 107 [arXiv:1101.3315] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    R. Alvares, C. Hoyos and A. Karch, An improved model of vector mesons in holographic QCD, Phys. Rev. D 84 (2011) 095020 [arXiv:1108.1191] [INSPIRE].ADSGoogle Scholar
  25. [25]
    T. Imoto, T. Sakai and S. Sugimoto, Mesons as open strings in a holographic dual of QCD, Prog. Theor. Phys. 124 (2010) 263 [arXiv:1005.0655] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  26. [26]
    S. Kuperstein and J. Sonnenschein, Noncritical supergravity (d > 1) and holography, JHEP 07 (2004) 049 [hep-th/0403254] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    S. Kuperstein and J. Sonnenschein, Non-critical, near extremal AdS 6 background as a holographic laboratory of four dimensional YM theory, JHEP 11 (2004) 026 [hep-th/0411009] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  29. [29]
    D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Correlation functions in the CFT(d)/AdS(d + 1) correspondence, Nucl. Phys. B 546 (1999) 96 [hep-th/9804058] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    A. Sen, Dirac-Born-Infeld action on the tachyon kink and vortex, Phys. Rev. D 68 (2003) 066008 [hep-th/0303057] [INSPIRE].ADSGoogle Scholar
  31. [31]
    A.A. Tseytlin, On nonAbelian generalization of Born-Infeld action in string theory, Nucl. Phys. B 501 (1997) 41 [hep-th/9701125] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons, Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    L. Da Rold and A. Pomarol, Chiral symmetry breaking from five dimensional spaces, Nucl. Phys. B 721 (2005) 79 [hep-ph/0501218] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Towards a holographic dual of large-N c QCD, JHEP 05 (2004) 041 [hep-th/0311270] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    T. Takayanagi, S. Terashima and T. Uesugi, Brane-anti-brane action from boundary string field theory, JHEP 03 (2001) 019 [hep-th/0012210] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    C. Kennedy and A. Wilkins, Ramond-Ramond couplings on Brane-anti-Brane systems, Phys. Lett. B 464 (1999) 206 [hep-th/9905195] [INSPIRE].MathSciNetADSGoogle Scholar
  37. [37]
    P. Kraus and F. Larsen, Boundary string field theory of the \( D\overline D \) system, Phys. Rev. D 63 (2001) 106004 [hep-th/0012198] [INSPIRE].MathSciNetADSGoogle Scholar
  38. [38]
    J. Bijnens, L. Girlanda and P. Talavera, The anomalous chiral Lagrangian of order p 6, Eur. Phys. J. C 23 (2002) 539 [hep-ph/0110400] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M.A. Shifman, A. Vainshtein and V.I. Zakharov, QCD and resonance physics: applications, Nucl. Phys. B 147 (1979) 448 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    J. Sonnenschein, What does the string/gauge correspondence teach us about Wilson loops?, hep-th/0003032 [INSPIRE].
  41. [41]
    I.R. Klebanov and J.M. Maldacena, Superconformal gauge theories and non-critical superstrings, Int. J. Mod. Phys. A 19 (2004) 5003 [hep-th/0409133] [INSPIRE].MathSciNetADSGoogle Scholar
  42. [42]
    F. Bigazzi, R. Casero, A. Cotrone, E. Kiritsis and A. Paredes, Non-critical holography and four-dimensional CFTs with fundamentals, JHEP 10 (2005) 012 [hep-th/0505140] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    T. Gherghetta, J.I. Kapusta and T.M. Kelley, Chiral symmetry breaking in the soft-wall AdS/QCD model, Phys. Rev. D 79 (2009) 076003 [arXiv:0902.1998] [INSPIRE].ADSGoogle Scholar
  44. [44]
    Y.-Q. Sui, Y.-L. Wu, Z.-F. Xie and Y.-B. Yang, Prediction for the mass spectra of resonance mesons in the soft-wall AdS/QCD with a modified 5D metric, Phys. Rev. D 81 (2010) 014024 [arXiv:0909.3887] [INSPIRE].ADSGoogle Scholar
  45. [45]
    J.P. Shock and F. Wu, Three flavor QCD from the holographic principle, JHEP 08 (2006) 023 [hep-ph/0603142] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    A.L. Cotrone, A. Dymarsky and S. Kuperstein, On vector meson masses in a holographic SQCD, JHEP 03 (2011) 005 [arXiv:1010.1017] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Deconfinement and gluon plasma dynamics in improved holographic QCD, Phys. Rev. Lett. 101 (2008) 181601 [arXiv:0804.0899] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Holography and thermodynamics of 5D dilaton-gravity, JHEP 05 (2009) 033 [arXiv:0812.0792] [INSPIRE].CrossRefGoogle Scholar
  49. [49]
    D. Kutasov, M. Mariño and G.W. Moore, Some exact results on tachyon condensation in string field theory, JHEP 10 (2000) 045 [hep-th/0009148] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    M. Alishahiha, H. Ita and Y. Oz, On superconnections and the tachyon effective action, Phys. Lett. B 503 (2001) 181 [hep-th/0012222] [INSPIRE].MathSciNetADSGoogle Scholar
  51. [51]
    M. Jarvinen and E. Kiritsis, Holographic models for QCD in the Veneziano limit, arXiv:1112.1261 [INSPIRE].
  52. [52]
    P. Colangelo, F. De Fazio, F. Giannuzzi, S. Nicotri and J. Sanz-Cillero, Anomalous AV*V vertex function in the soft-wall holographic model of QCD, arXiv:1108.5945 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Crete Center for Theoretical Physics, Department of PhysicsUniversity of CreteHeraklionGreece
  2. 2.APC-AstroParticule et CosmologieUniversité Paris 7Paris Cedex 13France

Personalised recommendations