Advertisement

Journal of High Energy Physics

, 2012:56 | Cite as

Two-loop QCD corrections to the helicity amplitudes for H → 3 partons

  • T. Gehrmann
  • M. Jaquier
  • E. W. N. Glover
  • A. Koukoutsakis
Article

Abstract

Many search strategies for the Standard Model Higgs boson apply specific selection criteria on hadronic jets observed in association with the Higgs boson decay products, either in the form of a jet veto, or by defining event samples according to jet multiplicity. To improve the theoretical description of Higgs-boson-plus-jet production (and the closely related Higgs boson transverse momentum distribution), we derive the two-loop QCD corrections to the helicity amplitudes for the processes H → ggg and H\( q\overline q g \) in an effective theory with infinite top quark mass. The helicity amplitudes are extracted from the coefficients appearing in the general tensorial structure for each process. The coefficients are derived from the Feynman graph amplitudes by means of projectors within the conventional dimensional regularization scheme. The infrared pole structure of our result agrees with the expectation from infrared factorization and the finite parts of the amplitudes are expressed in terms of one- and two-dimensional harmonic polylogarithms.

Keywords

Jets NLO Computations Hadronic Colliders QCD 

References

  1. [1]
    ALEPH Collaboration, DELPHI Collaboration, L3 Collaboration, OPAL Collaboration and The LEP Working Group For Higgs Boson Searches, Search for the standard model Higgs boson at LEP, Physics Letters B 565 (2003) 61 [hep-ex/0306033].ADSCrossRefGoogle Scholar
  2. [2]
    TEVNPH (Tevatron New Phenomina and Higgs Working Group), CDF and D0 collaboration, Combined CDF and D0 upper limits on standard model Higgs boson production with up to 8.6 fb −1 of data, arXiv:1107.5518 [INSPIRE].
  3. [3]
    ATLAS collaboration, Combined search for the standard model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt {s} = 7\,TeV \) with the ATLAS detector at the LHC, arXiv:1202.1408 [INSPIRE].
  4. [4]
    CMS collaboration, S. Chatrchyan et al., Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt {s} = 7\,TeV \), arXiv:1202.1488 [INSPIRE].
  5. [5]
    J.R. Ellis, M. Gaillard, D.V. Nanopoulos and C.T. Sachrajda, Is the mass of the Higgs boson about 10 GeV, Phys. Lett. B 83 (1979) 339 [INSPIRE].ADSGoogle Scholar
  6. [6]
    D. Graudenz, M. Spira and P. Zerwas, QCD corrections to Higgs boson production at proton proton colliders, Phys. Rev. Lett. 70 (1993) 1372 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    M. Spira, A. Djouadi, D. Graudenz and P. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A. Djouadi, M. Spira and P. Zerwas, QCD corrections to hadronic Higgs decays, Z. Phys. C 70 (1996) 427 [hep-ph/9511344] [INSPIRE].Google Scholar
  9. [9]
    M. Spira, QCD effects in Higgs physics, Fortsch. Phys. 46 (1998) 203 [hep-ph/9705337] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  10. [10]
    F. Wilczek, Decays of heavy vector mesons into Higgs particles, Phys. Rev. Lett. 39 (1977) 1304 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M.A. Shifman, A. Vainshtein and V.I. Zakharov, Remarks on Higgs boson interactions with nucleons, Phys. Lett. B 78 (1978) 443 [INSPIRE].ADSGoogle Scholar
  12. [12]
    T. Inami, T. Kubota and Y. Okada, Effective gauge theory and the effect of heavy quarks in Higgs boson decays, Z. Phys. C 18 (1983) 69 [INSPIRE].ADSGoogle Scholar
  13. [13]
    S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross-section for Higgs boson production in hadron hadron collisions, Nucl. Phys. B 665 (2003) 325 [hep-ph/0302135] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    C. Anastasiou, K. Melnikov and F. Petriello, Fully differential Higgs boson production and the di-photon signal through next-to-next-to-leading order, Nucl. Phys. B 724 (2005) 197 [hep-ph/0501130] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    C. Anastasiou, G. Dissertori and F. Stockli, NNLO QCD predictions for the H → WW → lνlν signal at the LHC, JHEP 09 (2007) 018 [arXiv:0707.2373] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. Grazzini, NNLO predictions for the Higgs boson signal in the H → WW → lνlν and H → ZZ → 4 l decay channels, JHEP 02 (2008) 043 [arXiv:0801.3232] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S. Catani, D. de Florian and M. Grazzini, Direct Higgs production and jet veto at the Tevatron and the LHC in NNLO QCD, JHEP 01 (2002) 015 [hep-ph/0111164] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    C.F. Berger, C. Marcantonini, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Higgs production with a central jet veto at NNLL + NNLO, JHEP 04 (2011) 092 [arXiv:1012.4480] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    D. de Florian, M. Grazzini and Z. Kunszt, Higgs production with large transverse momentum in hadronic collisions at next-to-leading order, Phys. Rev. Lett. 82 (1999) 5209 [hep-ph/9902483] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    V. Ravindran, J. Smith and W. Van Neerven, Next-to-leading order QCD corrections to differential distributions of Higgs boson production in hadron hadron collisions, Nucl. Phys. B 634 (2002) 247 [hep-ph/0201114] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J.M. Campbell, R. Ellis and G. Zanderighi, Next-to-Leading order Higgs + 2 jet production via gluon fusion, JHEP 10 (2006) 028 [hep-ph/0608194] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    J.M. Campbell, R. Ellis and C. Williams, Hadronic production of a Higgs boson and two jets at next-to-leading order, Phys. Rev. D 81 (2010) 074023 [arXiv:1001.4495] [INSPIRE].ADSGoogle Scholar
  26. [26]
    I.W. Stewart and F.J. Tackmann, Theory uncertainties for Higgs and other searches using jet bins, arXiv:1107.2117 [INSPIRE].
  27. [27]
    E. Gerwick, T. Plehn and S. Schumann, Understanding jet scaling and jet vetos in Higgs searches, Phys. Rev. Lett. 108 (2012) 032003 [arXiv:1108.3335] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    L.J. Dixon, E. Glover and V.V. Khoze, MHV rules for Higgs plus multi-gluon amplitudes, JHEP 12 (2004) 015 [hep-th/0411092] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    S.S. Badger, E.W.N. Glover and V.V. Khoze, MHV rules for Higgs plus multi-parton amplitudes, JHEP 03 (2005) 023 [hep-th/0412275] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    S.D. Badger and E.W.N. Glover, One-loop helicity amplitudes for H → gluons: the all-minus configuration, Nucl. Phys. Proc. Suppl. 160 (2006) 71 [hep-ph/0607139] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    L.J. Dixon and Y. Sofianatos, Analytic one-loop amplitudes for a Higgs boson plus four partons, JHEP 08 (2009) 058 [arXiv:0906.0008] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    S.D. Badger, E.W.N. Glover, P. Mastrolia and C. Williams, One-loop Higgs plus four gluon amplitudes: full analytic results, JHEP 01 (2010) 036 [arXiv:0909.4475] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    S.D. Badger, J.M. Campbell, R. Ellis and C. Williams, Analytic results for the one-loop NMHV Hqqgg amplitude, JHEP 12 (2009) 035 [arXiv:0910.4481] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    C.R. Schmidt, H → ggg ( \( gq\overline q \) at two loops in the large M t limit, Phys. Lett. B 413 (1997) 391 [hep-ph/9707448] [INSPIRE].ADSGoogle Scholar
  35. [35]
    A. Koukoutsakis, Higgs bosons and QCD jets at two loops, Ph.D. Thesis, University of Durham, Durham U.K. (2003).Google Scholar
  36. [36]
    T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent multiloop integrals, Nucl. Phys. B 585 (2000) 741 [hep-ph/0004013] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    T. Binoth and G. Heinrich, Numerical evaluation of phase space integrals by sector decomposition, Nucl. Phys. B 693 (2004) 134 [hep-ph/0402265] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    C. Anastasiou, K. Melnikov and F. Petriello, A new method for real radiation at NNLO, Phys. Rev. D 69 (2004) 076010 [hep-ph/0311311] [INSPIRE].ADSGoogle Scholar
  39. [39]
    G. Heinrich, Sector decomposition, Int. J. Mod. Phys. A 23 (2008) 1457 [arXiv:0803.4177] [INSPIRE].MathSciNetADSGoogle Scholar
  40. [40]
    J. Carter and G. Heinrich, SecDec: a general program for sector decomposition, Comput. Phys. Commun. 182 (2011) 1566 [arXiv:1011.5493] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    C. Anastasiou, F. Herzog and A. Lazopoulos, On the factorization of overlapping singularities at NNLO, JHEP 03 (2011) 038 [arXiv:1011.4867] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    C. Anastasiou, F. Herzog and A. Lazopoulos, The fully differential decay rate of a Higgs boson to bottom-quarks at NNLO in QCD, arXiv:1110.2368 [INSPIRE].
  43. [43]
    S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A. Gehrmann-De Ridder, T. Gehrmann and E. Glover, Antenna subtraction at NNLO, JHEP 09 (2005) 056 [hep-ph/0505111] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, Infrared structure of e + e  → 3 jets at NNLO, JHEP 11 (2007) 058 [arXiv:0710.0346] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A. Daleo, T. Gehrmann and D. Maître, Antenna subtraction with hadronic initial states, JHEP 04 (2007) 016 [hep-ph/0612257] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    A. Daleo, A. Gehrmann-De Ridder, T. Gehrmann and G. Luisoni, Antenna subtraction at NNLO with hadronic initial states: initial-final configurations, JHEP 01 (2010) 118 [arXiv:0912.0374] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    R. Boughezal, A. Gehrmann-De Ridder and M. Ritzmann, Antenna subtraction at NNLO with hadronic initial states: double real radiation for initial-initial configurations with two quark flavours, JHEP 02 (2011) 098 [arXiv:1011.6631] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    T. Gehrmann and P.F. Monni, Antenna subtraction at NNLO with hadronic initial states: real-virtual initial-initial configurations, JHEP 12 (2011) 049 [arXiv:1107.4037] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    E. Nigel Glover and J. Pires, Antenna subtraction for gluon scattering at NNLO, JHEP 06 (2010) 096 [arXiv:1003.2824] [INSPIRE].CrossRefGoogle Scholar
  51. [51]
    C. Anastasiou, E. Glover, C. Oleari and M. Tejeda-Yeomans, Two-loop QCD corrections to the scattering of massless distinct quarks, Nucl. Phys. B 601 (2001) 318[hep-ph/0010212] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    C. Anastasiou, E. Glover, C. Oleari and M. Tejeda-Yeomans, Two loop QCD corrections to massless identical quark scattering, Nucl. Phys. B 601 (2001) 341 [hep-ph/0011094] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    C. Anastasiou, E. Glover, C. Oleari and M. Tejeda-Yeomans, Two loop QCD corrections to massless quark gluon scattering, Nucl. Phys. B 605 (2001) 486[hep-ph/0101304] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    E.W.N. Glover, C. Oleari and M. Tejeda-Yeomans, Two loop QCD corrections to gluon-gluon scattering, Nucl. Phys. B 605 (2001) 467 [hep-ph/0102201] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    C. Anastasiou, E. Glover and M. Tejeda-Yeomans, Two loop QED and QCD corrections to massless fermion boson scattering, Nucl. Phys. B 629 (2002) 255 [hep-ph/0201274] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    E.W.N. Glover and M. Tejeda-Yeomans, Two loop QCD helicity amplitudes for massless quark massless gauge boson scattering, JHEP 06 (2003) 033 [hep-ph/0304169] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    E.W.N. Glover, Two loop QCD helicity amplitudes for massless quark quark scattering, JHEP 04 (2004) 021 [hep-ph/0401119] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    Z. Bern, A. De Freitas and L.J. Dixon, Two loop amplitudes for gluon fusion into two photons, JHEP 09 (2001) 037 [hep-ph/0109078] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    Z. Bern, A. De Freitas and L.J. Dixon, Two loop helicity amplitudes for gluon-gluon scattering in QCD and supersymmetric Yang-Mills theory, JHEP 03 (2002) 018 [hep-ph/0201161] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    Z. Bern, A. De Freitas and L.J. Dixon, Two loop helicity amplitudes for quark gluon scattering in QCD and gluino gluon scattering in supersymmetric Yang-Mills theory, JHEP 06 (2003) 028 [hep-ph/0304168] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    A. De Freitas and Z. Bern, Two-loop helicity amplitudes for quark-quark scattering in QCD and gluino-gluino scattering in supersymmetric Yang-Mills theory, JHEP 09 (2004) 039 [hep-ph/0409007] [INSPIRE].CrossRefGoogle Scholar
  62. [62]
    V. Del Duca and E. Glover, The high-energy limit of QCD at two loops, JHEP 10 (2001) 035 [hep-ph/0109028] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    A. Bogdan, V. Del Duca, V.S. Fadin and E. Glover, The quark Regge trajectory at two loops, JHEP 03 (2002) 032 [hep-ph/0201240] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    L. Garland, T. Gehrmann, E. Glover, A. Koukoutsakis and E. Remiddi, The two loop QCD matrix element for e + e  → 3 jets, Nucl. Phys. B 627 (2002) 107 [hep-ph/0112081] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    L. Garland, T. Gehrmann, E. Glover, A. Koukoutsakis and E. Remiddi, Two loop QCD helicity amplitudes for e + e  → three jets, Nucl. Phys. B 642 (2002) 227 [hep-ph/0206067] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    Z. Bern, L.J. Dixon and D.A. Kosower, Two-loop g → gg splitting amplitudes in QCD, JHEP 08 (2004) 012 [hep-ph/0404293] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  67. [67]
    S. Badger and E. Glover, Two loop splitting functions in QCD, JHEP 07 (2004) 040 [hep-ph/0405236] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    R. Ellis, I. Hinchliffe, M. Soldate and J. van der Bij, Higgs decay to τ + τ a possible signature of intermediate mass Higgs bosons at the SSC, Nucl. Phys. B 297 (1988) 221 [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    U. Baur and E. Glover, Higgs boson production at large transverse momentum in hadronic collisions, Nucl. Phys. B 339 (1990) 38 [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    K. Chetyrkin, B.A. Kniehl and M. Steinhauser, Hadronic Higgs decay to order \( \alpha_s^3 \), Phys. Rev. Lett. 79 (1997) 353 [hep-ph/9705240] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    B.A. Kniehl and M. Spira, Low-energy theorems in Higgs physics, Z. Phys. C 69 (1995) 77 [hep-ph/9505225] [INSPIRE].Google Scholar
  72. [72]
    K. Chetyrkin, B.A. Kniehl and M. Steinhauser, Decoupling relations to O(\( \alpha_s^3 \)) and their connection to low-energy theorems, Nucl. Phys. B 510 (1998) 61 [hep-ph/9708255] [INSPIRE].ADSGoogle Scholar
  73. [73]
    Z. Xu, D.-H. Zhang and L. Chang, Helicity amplitudes for multiple Bremsstrahlung in massless nonabelian gauge theories, Nucl. Phys. B 291 (1987) 392 [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    F.A. Berends, R. Kleiss and S. Jadach, Radiative corrections to muon pair and quark pair production in electron-positron collisions in the Z 0 region, Nucl. Phys. B 202 (1982) 63[INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    CALKUL collaboration, F.A. Berends et al., Multiple Bremsstrahlung in gauge theories at high-energies. 3. Finite mass effects in collinear photon Bremsstrahlung, Nucl. Phys. B 239 (1984) 382 [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    L.J. Dixon, Calculating scattering amplitudes efficiently, in the proceedings of TASI94 - QCD & beyond, D. Soper ed., World Scientific, Singapore (1995) 539 [hep-ph/9601359] [INSPIRE].
  77. [77]
    A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, Second-order QCD corrections to the thrust distribution, Phys. Rev. Lett. 99 (2007) 132002 [arXiv:0707.1285] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, NNLO corrections to event shapes in e + e annihilation, JHEP 12 (2007) 094 [arXiv:0711.4711] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, Jet rates in electron-positron annihilation at O(\( \alpha_s^3 \)) in QCD, Phys. Rev. Lett. 100 (2008) 172001 [arXiv:0802.0813] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, NNLO moments of event shapes in e + e annihilation, JHEP 05 (2009) 106 [arXiv:0903.4658] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    S. Weinzierl, NNLO corrections to 3-jet observables in electron-positron annihilation, Phys. Rev. Lett. 101 (2008) 162001 [arXiv:0807.3241] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    S. Weinzierl, Event shapes and jet rates in electron-positron annihilation at NNLO, JHEP 06 (2009) 041 [arXiv:0904.1077] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    S. Weinzierl, The infrared structure of e + e  → 3 jets at NNLO reloaded, JHEP 07 (2009) 009 [arXiv:0904.1145] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    S. Weinzierl, Moments of event shapes in electron-positron annihilation at NNLO, Phys. Rev. D 80 (2009) 094018 [arXiv:0909.5056] [INSPIRE].ADSGoogle Scholar
  85. [85]
    S. Weinzierl, Jet algorithms in electron-positron annihilation: perturbative higher order predictions, Eur. Phys. J. C 71 (2011) 1565 [Erratum ibid. C 71 (2011) 1717] [arXiv:1011.6247] [INSPIRE].ADSGoogle Scholar
  86. [86]
    T. Gehrmann and L. Tancredi, Two-loop QCD helicity amplitudes for \( q\overline q \)W ±γ and \( q\overline q \)Z 0γ, JHEP 02 (2012) 004 [arXiv:1112.1531] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  88. [88]
    C.G. Bollini and J.J. Giambiagi, Dimensional renormalization: the number of dimensions as a regularizing parameter, Nuovo Cim. 12 (1972) 20.Google Scholar
  89. [89]
    G. Cicuta and E. Montaldi, Analytic renormalization via continuous space dimension, Lett. Nuovo Cim. 4 (1972) 329 [INSPIRE].CrossRefGoogle Scholar
  90. [90]
    G. ’t Hooft and M. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  91. [91]
    J. Vermaseren, New features of form, math-ph/0010025 [INSPIRE].
  92. [92]
    J. Vermaseren, The form project, Nucl. Phys. Proc. Suppl. 183 (2008) 19 [arXiv:0806.4080] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    F. Tkachov, A theorem on analytical calculability of four loop renormalization group functions, Phys. Lett. B 100 (1981) 65 [INSPIRE].MathSciNetADSGoogle Scholar
  94. [94]
    K. Chetyrkin and F. Tkachov, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  96. [96]
    S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].MathSciNetADSGoogle Scholar
  97. [97]
    C. Studerus, Reduze-Feynman integral reduction in C++, Comput. Phys. Commun. 181 (2010) 1293 [arXiv:0912.2546] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  98. [98]
    T. Gehrmann and E. Remiddi, Two loop master integrals for gamma* → 3 jets: the planar topologies, Nucl. Phys. B 601 (2001) 248 [hep-ph/0008287] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    T. Gehrmann and E. Remiddi, Two loop master integrals for gamma* → 3 jets: the nonplanar topologies, Nucl. Phys. B 601 (2001) 287 [hep-ph/0101124] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    E. Remiddi and J. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].MathSciNetADSGoogle Scholar
  101. [101]
    N. Nielsen, Der Eulersche Dilogarithmus und seine Verallgemeinerungen, Nova Acta Leopoldiana (Halle) 90 (1909) 123.Google Scholar
  102. [102]
    K.S. Kölbig, J.A. Mignaco and E. Remiddi, On Nielsens generalized polylogarithms and their numerical calculation, BIT 10 (1970) 38.MATHCrossRefGoogle Scholar
  103. [103]
    T. Gehrmann and E. Remiddi, Numerical evaluation of harmonic polylogarithms, Comput. Phys. Commun. 141 (2001) 296 [hep-ph/0107173] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  104. [104]
    T. Gehrmann and E. Remiddi, Numerical evaluation of two-dimensional harmonic polylogarithms, Comput. Phys. Commun. 144 (2002) 200 [hep-ph/0111255] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  105. [105]
    J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun. 167 (2005) 177 [hep-ph/0410259] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  106. [106]
    D. Maître, HPL, a Mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun. 174 (2006) 222 [hep-ph/0507152] [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    S. Buehler and C. Duhr, CHAPLIN - Complex harmonic polylogarithms in Fortran, arXiv:1106.5739 [INSPIRE].
  108. [108]
    T. Gehrmann and E. Remiddi, Analytic continuation of massless two loop four point functions, Nucl. Phys. B 640 (2002) 379 [hep-ph/0207020] [INSPIRE].ADSCrossRefGoogle Scholar
  109. [109]
    R.V. Harlander and W.B. Kilgore, Soft and virtual corrections to proton proton → H + X at NNLO, Phys. Rev. D 64 (2001) 013015 [hep-ph/0102241] [INSPIRE].ADSGoogle Scholar
  110. [110]
    S. Catani, The singular behavior of QCD amplitudes at two loop order, Phys. Lett. B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].ADSGoogle Scholar
  111. [111]
    G.F. Sterman and M.E. Tejeda-Yeomans, Multiloop amplitudes and resummation, Phys. Lett. B 552 (2003) 48 [hep-ph/0210130] [INSPIRE].ADSGoogle Scholar
  112. [112]
    T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett. 102 (2009) 162001 [arXiv:0901.0722] [INSPIRE].ADSCrossRefGoogle Scholar
  113. [113]
    E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes, JHEP 03 (2009) 079 [arXiv:0901.1091] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • T. Gehrmann
    • 1
  • M. Jaquier
    • 1
  • E. W. N. Glover
    • 2
  • A. Koukoutsakis
    • 2
  1. 1.Institut für Theoretische PhysikUniversität ZürichZürichSwitzerland
  2. 2.IPPP, Department of PhysicsUniversity of DurhamDurhamUK

Personalised recommendations