Advertisement

Journal of High Energy Physics

, 2012:53 | Cite as

Axion monodromy in a model of holographic gluodynamics

  • Sergei Dubovsky
  • Albion Lawrence
  • Matthew M. RobertsEmail author
Article

Abstract

The low energy field theory for N type IIA D4-branes at strong ’t Hooft coupling, wrapped on a circle with antiperiodic boundary conditions for fermions, is known to have a vacuum energy which depends on the θ angle for the gauge fields, and which is a multivalued function of this angle. This gives a field-theoretic realization of “axion monodromy” for a nondynamical axion. We construct the supergravity solution dual to the field theory in the metastable state which is the adiabatic continuation of the vacuum to large values of θ. We compute the energy of this state and show that it initially rises quadratically and then flattens out. We show that the glueball mass decreases with θ, becoming much lower than the 5d KK scale governing the UV completion of this model. We construct two different classes of domain walls interpolating between adjacent vacua. We identify a number of instability modes — nucleation of domain walls, bulk Casimir forces, and condensation of tachyonic winding modes in the bulk — which indicate that the metastable branch eventually becomes unstable. Finally, we discuss two phenomena which can arise when the axion is dynamical; axion-driven inflation, and axion strings.

Keywords

Gauge-gravity correspondence AdS-CFT Correspondence Nonperturbative Effects 

References

  1. [1]
    L. Giusti, S. Petrarca and B. Taglienti, Theta dependence of the vacuum energy in the SU(3) gauge theory from the lattice, Phys. Rev. D 76 (2007) 094510 [arXiv:0705.2352] [INSPIRE].ADSGoogle Scholar
  2. [2]
    E. Witten, Large-N chiral dynamics, Annals Phys. 128 (1980) 363 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    E. Witten, Theta dependence in the large-N limit of four-dimensional gauge theories, Phys. Rev. Lett. 81 (1998) 2862 [hep-th/9807109] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. [4]
    L. McAllister, E. Silverstein and A. Westphal, Gravity waves and linear inflation from axion monodromy, Phys. Rev. D 82 (2010) 046003 [arXiv:0808.0706] [INSPIRE].ADSGoogle Scholar
  5. [5]
    E. Silverstein and A. Westphal, Monodromy in the CMB: gravity waves and string inflation, Phys. Rev. D 78 (2008) 106003 [arXiv:0803.3085] [INSPIRE].ADSGoogle Scholar
  6. [6]
    N. Kaloper and L. Sorbo, A natural framework for chaotic inflation, Phys. Rev. Lett. 102 (2009)121301 [arXiv:0811.1989] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    M. Berg, E. Pajer and S. Sjors, Dantes Inferno, Phys. Rev. D 81 (2010) 103535 [arXiv:0912.1341] [INSPIRE].ADSGoogle Scholar
  8. [8]
    N. Kaloper, A. Lawrence and L. Sorbo, An ignoble approach to large field inflation, JCAP 03 (2011) 023 [arXiv:1101.0026] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    D.H. Lyth, What would we learn by detecting a gravitational wave signal in the cosmic microwave background anisotropy?, Phys. Rev. Lett. 78 (1997) 1861 [hep-ph/9606387] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    G. Efstathiou and K.J. Mack, The Lyth bound revisited, JCAP 05 (2005) 008 [astro-ph/0503360] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    X. Dong, B. Horn, E. Silverstein and A. Westphal, Simple exercises to flatten your potential, Phys. Rev. D 84 (2011) 026011 [arXiv:1011.4521] [INSPIRE].ADSGoogle Scholar
  12. [12]
    A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, String axiverse, Phys. Rev. D 81 (2010) 123530 [arXiv:0905.4720] [INSPIRE].ADSGoogle Scholar
  13. [13]
    A. Arvanitaki and S. Dubovsky, Exploring the string axiverse with precision black hole physics, Phys. Rev. D 83 (2011) 044026 [arXiv:1004.3558] [INSPIRE].ADSGoogle Scholar
  14. [14]
    S. Dubovsky and V. Gorbenko, Black hole portal into hidden valleys, Phys. Rev. D 83 (2011) 106002 [arXiv:1012.2893] [INSPIRE].ADSGoogle Scholar
  15. [15]
    S. Panda, Y. Sumitomo and S.P. Trivedi, Axions as quintessence in string theory, Phys. Rev. D 83 (2011) 083506 [arXiv:1011.5877] [INSPIRE].ADSGoogle Scholar
  16. [16]
    M.A. Shifman, Domain walls and decay rate of the excited vacua in the large-N Yang-Mills theory, Phys. Rev. D 59 (1999) 021501 [hep-th/9809184] [INSPIRE].MathSciNetADSGoogle Scholar
  17. [17]
    J. Barbon and A. Pasquinucci, Aspects of instanton dynamics in AdS/CFT duality, Phys. Lett. B 458 (1999) 288 [hep-th/9904190] [INSPIRE].MathSciNetADSGoogle Scholar
  18. [18]
    S. Kachru, J. Pearson and H.L. Verlinde, Brane/flux annihilation and the string dual of a nonsupersymmetric field theory, JHEP 06 (2002) 021 [hep-th/0112197] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  20. [20]
    J. Polchinski, Cambridge Monographs on Mathematical Physics. Vol. 2: String theory: superstring theory and beyond, Cambridge University Press, Cambridge U.K. (1998).Google Scholar
  21. [21]
    G.T. Horowitz, Tachyon condensation and black strings, JHEP 08 (2005) 091 [hep-th/0506166] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    R. Güven, Black p-brane solutions of D = 11 supergravity theory, Phys. Lett. B 276 (1992) 49 [INSPIRE].ADSGoogle Scholar
  23. [23]
    M. Duff, TASI lectures on branes, black holes and anti-de Sitter space, hep-th/9912164 [INSPIRE].
  24. [24]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133 ] [hep-th/9711200] [INSPIRE].
  25. [25]
    N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity and the large-N limit of theories with sixteen supercharges, Phys. Rev. D 58 (1998) 046004 [hep-th/9802042] [INSPIRE].MathSciNetADSGoogle Scholar
  26. [26]
    G.T. Horowitz and R.C. Myers, The AdS/CFT correspondence and a new positive energy conjecture for general relativity, Phys. Rev. D 59 (1998) 026005 [hep-th/9808079] [INSPIRE].MathSciNetADSGoogle Scholar
  27. [27]
    S. Hawking and G.T. Horowitz, The gravitational Hamiltonian, action, entropy and surface terms, Class. Quant. Grav. 13 (1996) 1487 [gr-qc/9501014] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  28. [28]
    D.J. Gross and H. Ooguri, Aspects of large-N gauge theory dynamics as seen by string theory, Phys. Rev. D 58 (1998) 106002 [hep-th/9805129] [INSPIRE].MathSciNetADSGoogle Scholar
  29. [29]
    C. Csáki, H. Ooguri, Y. Oz and J. Terning, Glueball mass spectrum from supergravity, JHEP 01 (1999) 017 [hep-th/9806021] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    R. de Mello Koch, A. Jevicki, M. Mihailescu and J.P. Nunes, Evaluation of glueball masses from supergravity, Phys. Rev. D 58 (1998) 105009 [hep-th/9806125] [INSPIRE].ADSGoogle Scholar
  31. [31]
    S.R. Coleman, The fate of the false vacuum. 1. Semiclassical theory, Phys. Rev. D 15 (1977) 2929 [Erratum ibid. D 16 (1977) 1248] [INSPIRE].
  32. [32]
    A. Adams, X. Liu, J. McGreevy, A. Saltman and E. Silverstein, Things fall apart: topology change from winding tachyons, JHEP 10 (2005) 033 [hep-th/0502021] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    M. Kruczenski and A. Lawrence, Random walks and the Hagedorn transition, JHEP 07 (2006)031 [hep-th/0508148] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  35. [35]
    H.L. Verlinde, Holography and compactification, Nucl. Phys. B 580 (2000) 264 [hep-th/9906182] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    A. Vilenkin and A. Everett, Cosmic strings and domain walls in models with Goldstone and PseudoGoldstone bosons, Phys. Rev. Lett. 48 (1982) 1867 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A. D’Adda, M. Lüscher and P. Di Vecchia, A 1/n expandable series of nonlinear σ-models with instantons, Nucl. Phys. B 146 (1978) 63 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    E. Witten, Instantons, the quark model and the 1/n expansion, Nucl. Phys. B 149 (1979) 285 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    S.-J. Rey, S. Theisen and J.-T. Yee, Wilson-Polyakov loop at finite temperature in large-N gauge theory and anti-de Sitter supergravity, Nucl. Phys. B 527 (1998) 171 [hep-th/9803135] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    A. Brandhuber, N. Itzhaki, J. Sonnenschein and S. Yankielowicz, Wilson loops in the large-N limit at finite temperature, Phys. Lett. B 434 (1998) 36 [hep-th/9803137] [INSPIRE].MathSciNetADSGoogle Scholar
  41. [41]
    A. Brandhuber, N. Itzhaki, J. Sonnenschein and S. Yankielowicz, Wilson loops, confinement and phase transitions in large-N gauge theories from supergravity, JHEP 06 (1998) 001 [hep-th/9803263] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Sergei Dubovsky
    • 1
  • Albion Lawrence
    • 1
    • 2
  • Matthew M. Roberts
    • 1
    Email author
  1. 1.Center for Cosmology and Particle Physics, Department of PhysicsNew York UniversityNew YorkU.S.A.
  2. 2.Martin Fisher School of PhysicsBrandeis UniversityWalthamU.S.A.

Personalised recommendations