Journal of High Energy Physics

, 2012:48 | Cite as

aMC@NLO predictions for Wjj production at the Tevatron

  • Rikkert Frederix
  • Stefano Frixione
  • Valentin Hirschi
  • Fabio Maltoni
  • Roberto Pittau
  • Paolo Torrielli
Open Access
Article

Abstract

We use aMC@NLO to predict the ℓν + 2-jet cross section at the NLO accuracy in QCD matched to parton shower simulations. We find that the perturbative expansion is well behaved for all the observables we study, and in particular for those relevant to the experimental analyses. We therefore conclude that NLO corrections to this process cannot be responsible for the excess of events in the dijet invariant mass observed by the CDF collaboration.

Keywords

QCD Phenomenology 

References

  1. [1]
    CDF collaboration, T. Aaltonen et al., Invariant mass distribution of jet pairs produced in association with a W boson in \( p\overline p \) collisions at \( \sqrt {s} = {1}.{96}\,TeV \), Phys. Rev. Lett. 106 (2011) 171801 [arXiv:1104.0699] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    D0 collaboration, V. Abazov et al., Bounds on an anomalous dijet resonance in W + jets production in \( p\overline p \) collisions at \( \sqrt {s} = {1}.{96}\,TeV \), Phys. Rev. Lett. 107 (2011) 011804 [arXiv:1106.1921] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    S. Catani, F. Krauss, R. Kuhn and B. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    F. Krauss, Matrix elements and parton showers in hadronic interactions, JHEP 08 (2002) 015 [hep-ph/0205283] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J.M. Campbell, A. Martin and C. Williams, NLO predictions for a lepton, missing transverse momentum and dijets at the Tevatron, Phys. Rev. D 84 (2011) 036005 [arXiv:1105.4594] [INSPIRE].ADSGoogle Scholar
  7. [7]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    S. Alioli, K. Hamilton, P. Nason, C. Oleari and E. Re, Jet pair production in POWHEG, JHEP 04 (2011) 081 [arXiv:1012.3380] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S. Alioli, P. Nason, C. Oleari and E. Re, Vector boson plus one jet production in POWHEG, JHEP 01 (2011) 095 [arXiv:1009.5594] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    G. Marchesini et al., HERWIG: a Monte Carlo event generator for simulating hadron emission reactions with interfering gluons. Version 5.1 — April 1991, Comput. Phys. Commun. 67 (1992) 465 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    G. Corcella et al., HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    G. Corcella et al., HERWIG 6.5 release note, hep-ph/0210213 [INSPIRE].
  15. [15]
    R. Frederix, S. Frixione and P. Torrielli, aMC@NLO: automation of the matching between NLO computations and parton showers, in preparation (2011).Google Scholar
  16. [16]
    V. Hirschi et al., Automation of one-loop QCD corrections, JHEP 05 (2011) 044 [arXiv:1103.0621] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP 10 (2009) 003 [arXiv:0908.4272] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    Z. Nagy and D.E. Soper, Matching parton showers to NLO computations, JHEP 10 (2005) 024 [hep-ph/0503053] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    W.T. Giele, D.A. Kosower and P.Z. Skands, A simple shower and matching algorithm, Phys. Rev. D 78 (2008) 014026 [arXiv:0707.3652] [INSPIRE].ADSGoogle Scholar
  23. [23]
    N. Lavesson and L. Lönnblad, Extending CKKW-merging to one-loop matrix elements, JHEP 12 (2008) 070 [arXiv:0811.2912] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    W. Giele, D. Kosower and P. Skands, Higher-order corrections to timelike jets, Phys. Rev. D 84 (2011) 054003 [arXiv:1102.2126] [INSPIRE].ADSGoogle Scholar
  25. [25]
    K. Hamilton and P. Nason, Improving NLO-parton shower matched simulations with higher order matrix elements, JHEP 06 (2010) 039 [arXiv:1004.1764] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S. Hoche, F. Krauss, M. Schonherr and F. Siegert, NLO matrix elements and truncated showers, JHEP 08 (2011) 123 [arXiv:1009.1127] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S. Alioli, K. Hamilton and E. Re, Practical improvements and merging of POWHEG simulations for vector boson production, JHEP 09 (2011) 104 [arXiv:1108.0909] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].ADSGoogle Scholar
  31. [31]
    P. Torrielli and S. Frixione, Matching NLO QCD computations with PYTHIA using MC@NLO, JHEP 04 (2010) 110 [arXiv:1002.4293] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    CDF collaboration, Invariant mass distribution of jet pairs produced in association with a W boson in ppbar collisions at \( \sqrt {s} = {1}.{96}\,TeV \), http://www-cdf.fnal.gov/physics/ewk/2011/wjj/7_3.html.
  33. [33]
    M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    R. Frederix et al., Four-lepton production at hadron colliders: aMC@NLO predictions with theoretical uncertainties, arXiv:1110.4738 [INSPIRE].
  35. [35]
    J.M. Campbell and R. Ellis, Next-to-leading order corrections to W + 2 jet and Z + 2 jet production at hadron colliders, Phys. Rev. D 65 (2002) 113007 [hep-ph/0202176] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Rikkert Frederix
    • 1
  • Stefano Frixione
    • 2
    • 3
  • Valentin Hirschi
    • 3
  • Fabio Maltoni
    • 4
  • Roberto Pittau
    • 5
  • Paolo Torrielli
    • 3
  1. 1.Institut für Theoretische PhysikUniversität ZürichZürichSwitzerland
  2. 2.PH Department, TH Unit, CERNGeneva 23Switzerland
  3. 3.ITPP, EPFLLausanneSwitzerland
  4. 4.Centre for Cosmology, Particle Physics and Phenomenology (CP3)Université catholique de LouvainLouvain-la-NeuveBelgium
  5. 5.Departamento de Física Teórica y del Cosmos y CAFPEUniversidad de GranadaGranadaSpain

Personalised recommendations