Journal of High Energy Physics

, 2012:28 | Cite as

Requirements for a new detector at the South Pole receiving an accelerator neutrino beam

Article

Abstract

There are recent considerations to increase the photomultiplier density in the IceCube detector array beyond that of DeepCore, which will lead to a lower detector energy threshold and a relatively huge fiducial mass for the neutrino detection. This initiative is known as “Precision IceCube Next Generation Upgrade” (PINGU). We discuss the possibility to send a neutrino beam from one of the major accelerator laboratories in the Northern hemisphere to such a detector. Such an experiment would be unique in the sense that it would be the only neutrino beam where the baseline crosses the Earth’s outer core. We study the detector requirements for a beta beam, a neutrino factory beam, and a superbeam, where we consider the cases of both small θ13 and large θ13, as suggested by the recent T2K and Double Chooz results. We illustrate that a flavor-clean beta beam best suits the requirements of such a detector, in particular, that PINGU may replace a magic baseline detector for small values of θ13 — even in the absence of any energy resolution capability. For large θ13, however, a single-baseline beta beam experiment cannot compete if it is constrained by the CERN-SPS. For a neutrino factory, because of the missing charge identification possibility in the detector, a very good energy resolution is required. If this can be achieved, especially a low energy neutrino factory, which does not suffer from the tau contamination, may be an interesting option for large θ13. For the superbeam, where we consider the LBNE beam as a reference, electron neutrino flavor identification and statistics are two of the primary limitations. Finally, we demonstrate that in principle the neutrino factory and superbeam options may measure the density of the Earth’s core at a sub percent level for sin2 2θ13 ≳ 0.01.

Keywords

Beyond Standard Model Neutrino Physics 

References

  1. [1]
    M. Gonzalez-Garcia and M. Maltoni, Phenomenology with Massive Neutrinos, Phys. Rept. 460 (2008)1 [arXiv:0704.1800] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    MINOS collaboration, P. Adamson et al., Measurement of Neutrino Oscillations with the MINOS Detectors in the NuMI Beam, Phys. Rev. Lett. 101 (2008) 131802 [arXiv:0806.2237] [INSPIRE].CrossRefGoogle Scholar
  4. [4]
    SNO collaboration, Q. Ahmad et al., Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    KamLAND collaboration, T. Araki et al., Measurement of neutrino oscillation with KamLAND: Evidence of spectral distortion, Phys. Rev. Lett. 94 (2005) 081801 [hep-ex/0406035] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    CHOOZ collaboration, M Apollonio et al., Search for neutrino oscillations on a long baseline at the CHOOZ nuclear power station, Eur. Phys. J. C 27 (2003) 331 [hep-ex/0301017] [INSPIRE].Google Scholar
  7. [7]
    T2K collaboration, K. Abe et al., Indication of Electron Neutrino Appearance from an Accelerator-produced Off-axis Muon Neutrino Beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    DOUBLE-CHOOZ collaboration, Y. Abe et al., Indication for the disappearance of reactor electron antineutrinos in the Double CHOOZ experiment, arXiv:1112.6353 [INSPIRE].
  9. [9]
    G. Fogli, E. Lisi, A. Marrone, A. Palazzo and A. Rotunno, Evidence of θ13 ¿0 from global neutrino data analysis, Phys. Rev. D 84 (2011) 053007 [arXiv:1106.6028]. Slightly revised text/ results unchanged. To appear in Phys. Rev. D [INSPIRE].ADSGoogle Scholar
  10. [10]
    T. Schwetz, M. Tortola and J. Valle, Where we are on θ 13 : addendum toGlobal neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters’, New J. Phys. 13 (2011)109401 [arXiv:1108.1376] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    P. Huber, M. Lindner, M. Rolinec, T. Schwetz and W. Winter, Prospects of accelerator and reactor neutrino oscillation experiments for the coming ten years, Phys. Rev. D 70 (2004) 073014 [hep-ph/0403068] [INSPIRE].ADSGoogle Scholar
  12. [12]
    P. Huber, M. Lindner, T. Schwetz and W. Winter, First hint for CP-violation in neutrino oscillations from upcoming superbeam and reactor experiments, JHEP 11 (2009) 044 [arXiv:0907.1896] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    The MiniBooNE collaboration, A. Aguilar-Arevalo et al., Event Excess in the MiniBooNE Search for νμ → νe Oscillations, Phys. Rev. Lett. 105 (2010) 181801 [arXiv:1007.1150] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    LSND collaboration, A. Aguilar-Arevalo et al., Evidence for neutrino oscillations from the observation of anti-neutrino(electron) appearance in a anti-neutrino(muon) beam, Phys. Rev. D 64 (2001) 112007 [hep-ex/0104049] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    OPERA collaboration, T. Adam et al., Measurement of the neutrino velocity with the OPERA detector in the CNGS beam, arXiv:1109.4897 [INSPIRE].
  16. [16]
    ISS Physics Working Group collaboration, A. Bandyopadhyay et al., Physics at a future Neutrino Factory and super-beam facility, Rept. Prog. Phys. 72 (2009) 106201 [arXiv:0710.4947]. 370 pages, 121 postscript figures [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    ISS Detector Working Group collaboration, T. Abe et al., Detectors and flux instrumentation for future neutrino facilities, 2009 JINST 4 T05001 [arXiv:0712.4129]. Detector report of the International Scoping Study of a future Neutrino Factory and Super-Beam facility, 86 pages, 49 figures [INSPIRE].
  18. [18]
    ISS Accelerator Working Group collaboration, M. Apollonio et al., Accelerator design concept for future neutrino facilities, 2009 JINST 4 P07001 [arXiv:0802.4023] [INSPIRE].
  19. [19]
    International design study of the neutrino factory, http://www.ids-nf.org.
  20. [20]
    Euronu: A high intensity neutrino oscillation facility in europe, http://www.euronu.org.
  21. [21]
    IceCube collaboration, J. Ahrens et al., Sensitivity of the IceCube detector to astrophysical sources of high energy muon neutrinos, Astropart. Phys. 20 (2004) 507 [astro-ph/0305196] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    E.K. Akhmedov, Parametric resonance of neutrino oscillations and passage of solar and atmospheric neutrinos through the earth, Nucl. Phys. B 538 (1999) 25 [hep-ph/9805272] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Chizhov, M. Maris and S. Petcov, On the oscillation length resonance in the transitions of solar and atmospheric neutrinos crossing the earth core, hep-ph/9810501 [INSPIRE].
  24. [24]
    W. Winter, Probing the absolute density of the Earths core using a vertical neutrino beam, Phys. Rev. D 72 (2005) 037302 [hep-ph/0502097] [INSPIRE].ADSGoogle Scholar
  25. [25]
    K. Dick, M. Freund, P. Huber and M. Lindner, Masses and mixings from neutrino beams pointing to neutrino telescopes, Nucl. Phys. B 588 (2000) 101 [hep-ph/0006090] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    D. Fargion, D. D’Armiento, P. Desiati and P. Paggi, Beaming neutrino and antineutrinos across the Earth to focus muon-tau flavor mixing and to disentangle CPT violation puzzle, arXiv:1012.3245 [INSPIRE].
  27. [27]
    IDS-NF collaboration, S. Choubey et al., International Design Study for the Neutrino Factory, Interim Design Report, arXiv:1112.2853 [INSPIRE].
  28. [28]
    P. Huber and W. Winter, Neutrino factories and themagicbaseline, Phys. Rev. D 68 (2003)037301 [hep-ph/0301257] [INSPIRE].ADSGoogle Scholar
  29. [29]
    S.K. Agarwalla, P. Huber, J. Tang and W. Winter, Optimization of the Neutrino Factory, revisited, JHEP 01 (2011) 120 [arXiv:1012.1872] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S. Choubey, P. Coloma, A. Donini and E. Fernandez-Martinez, Optimized Two-Baseline Beta-Beam Experiment, JHEP 12 (2009) 020 [arXiv:0907.2379] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    W. Winter, Minimal Neutrino Beta Beam for Large theta(13), Phys. Rev. D 78 (2008) 037101 [arXiv:0804.4000] [INSPIRE].ADSGoogle Scholar
  32. [32]
    Long baseline neutrino experiment, http://lbne.fnal.gov/.
  33. [33]
    A. Cervera, A. Donini, M. Gavela, J. Gomez Cadenas, P. Hernández, et al., Golden measurements at a neutrino factory, Nucl. Phys. B 579 (2000) 17 [Erratum ibid. B 593 (2001)731-732] [hep-ph/0002108] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M. Freund, Analytic approximations for three neutrino oscillation parameters and probabilities in matter, Phys. Rev. D 64 (2001) 053003 [hep-ph/0103300] [INSPIRE].ADSGoogle Scholar
  35. [35]
    E.K. Akhmedov, R. Johansson, M. Lindner, T. Ohlsson and T. Schwetz, Series expansions for three flavor neutrino oscillation probabilities in matter, JHEP 04 (2004) 078 [hep-ph/0402175] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    V. Barger, D. Marfatia and K. Whisnant, Breaking eight fold degeneracies in neutrino CP-violation, mixing and mass hierarchy, Phys. Rev. D 65 (2002) 073023 [hep-ph/0112119] [INSPIRE].ADSGoogle Scholar
  37. [37]
    R. Gandhi and W. Winter, Physics with a very long neutrino factory baseline, Phys. Rev. D 75 (2007)053002 [hep-ph/0612158] [INSPIRE].ADSGoogle Scholar
  38. [38]
    J. Kopp, T. Ota and W. Winter, Neutrino factory optimization for non-standard interactions, Phys. Rev. D 78 (2008) 053007 [arXiv:0804.2261] [INSPIRE].ADSGoogle Scholar
  39. [39]
    V. Barger, P. Huber, D. Marfatia and W. Winter, Which long-baseline neutrino experiments are preferable?, Phys. Rev. D 76 (2007) 053005 [hep-ph/0703029] [INSPIRE].ADSGoogle Scholar
  40. [40]
    P. Coloma and E. Fernandez-Martinez, Optimization of neutrino oscillation facilities for large θ 13, arXiv:1110.4583 [INSPIRE].
  41. [41]
    M. Freund, M. Lindner, S. Petcov and A. Romanino, Testing matter effects in very long baseline neutrino oscillation experiments, Nucl. Phys. B 578 (2000) 27 [hep-ph/9912457] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    A.M. Dziewonski and D.L. Anderson, Preliminary reference Earth model, Phys. Earth Planet. Interiors 25 (1981) 297.ADSCrossRefGoogle Scholar
  43. [43]
    P. Huber and T. Schwetz, A Low energy neutrino factory with non-magnetic detectors, Phys. Lett. B 669 (2008) 294 [arXiv:0805.2019] [INSPIRE].ADSGoogle Scholar
  44. [44]
    P. Huber, M. Lindner, M. Rolinec and W. Winter, Optimization of a neutrino factory oscillation experiment, Phys. Rev. D 74 (2006) 073003 [hep-ph/0606119] [INSPIRE].ADSGoogle Scholar
  45. [45]
    P. Huber, M. Lindner and W. Winter, From parameter space constraints to the precision determination of the leptonic Dirac CP phase, JHEP 05 (2005) 020 [hep-ph/0412199] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    W. Winter, Direct test of the MSW effect by the solar appearance term in beam experiments, Phys. Lett. B 613 (2005) 67 [hep-ph/0411309] [INSPIRE].ADSGoogle Scholar
  47. [47]
    H. Minakata and S. Uchinami, On in situ Determination of Earth Matter Density in Neutrino Factory, Phys. Rev. D 75 (2007) 073013 [hep-ph/0612002] [INSPIRE].ADSGoogle Scholar
  48. [48]
    P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    M. Gonzalez-Garcia, M. Maltoni and J. Salvado, Updated global fit to three neutrino mixing: status of the hints of theta13 ¿ 0, JHEP 04 (2010) 056 [arXiv:1001.4524] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    R.J. Geller and T. Hara, Geophysical aspects of very long baseline neutrino experiments, Nucl. Instrum. Meth. A 503 (2001) 187 [hep-ph/0111342] [INSPIRE].
  52. [52]
    T. Ohlsson and W. Winter, The Role of matter density uncertainties in the analysis of future neutrino factory experiments, Phys. Rev. D 68 (2003) 073007 [hep-ph/0307178] [INSPIRE].ADSGoogle Scholar
  53. [53]
    J. Tang and W. Winter, Physics with near detectors at a neutrino factory, Phys. Rev. D 80 (2009)053001 [arXiv:0903.3039] [INSPIRE].ADSGoogle Scholar
  54. [54]
    S.K. Agarwalla, S. Choubey, A. Raychaudhuri and W. Winter, Optimizing the greenfield Beta-beam, JHEP 06 (2008) 090 [arXiv:0802.3621] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    P. Huber, M. Lindner, M. Rolinec and W. Winter, Physics and optimization of beta-beams: From low to very high gamma, Phys. Rev. D 73 (2006) 053002 [hep-ph/0506237] [INSPIRE].ADSGoogle Scholar
  56. [56]
    J. Burguet-Castell, D. Casper, E. Couce, J. Gomez-Cadenas and P. Hernández, Optimal beta-beam at the CERN-SPS, Nucl. Phys. B 725 (2005) 306 [hep-ph/0503021] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    S. Geer, O. Mena and S. Pascoli, A Low energy neutrino factory for large θ 13, Phys. Rev. D 75 (2007)093001 [hep-ph/0701258] [INSPIRE].ADSGoogle Scholar
  58. [58]
    A.D. Bross, M. Ellis, S. Geer, O. Mena and S. Pascoli, A Neutrino factory for both large and small θ 13, Phys. Rev. D 77 (2008) 093012 [arXiv:0709.3889] [INSPIRE].ADSGoogle Scholar
  59. [59]
    E. Fernández Martínez, T. Li, S. Pascoli and O. Mena, Improvement of the low energy neutrino factory, Phys. Rev. D 81 (2010) 073010 [arXiv:0911.3776] [INSPIRE].ADSGoogle Scholar
  60. [60]
    A. Cervera, A. Laing, J. Martin-Albo and F. Soler, Performance of the MIND detector at a Neutrino Factory using realistic muon reconstruction, Nucl. Instrum. Meth. A 624 (2010) 601 [arXiv:1004.0358] [INSPIRE].ADSGoogle Scholar
  61. [61]
    A. Laing, Optimization of Detectors for the Golden Channel at a Neutrino Factory, Ph.D. thesis, Glasgow University (2010).Google Scholar
  62. [62]
    D. Indumathi and N. Sinha, Effect of tau neutrino contribution to muon signals at neutrino factories, Phys. Rev. D 80 (2009) 113012 [arXiv:0910.2020] [INSPIRE].ADSGoogle Scholar
  63. [63]
    A. Donini, J. Gomez Cadenas and D. Meloni, The τ -contamination of the golden muon sample at the Neutrino Factory, JHEP 02 (2011) 095 [arXiv:1005.2275] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    D. Beavis et al., Proposal of BNL AGS E-889, BNL Tech. Rep. (1995).Google Scholar
  65. [65]
    P. Huber and J. Kopp, Two experiments for the price of one? - The role of the second oscillation maximum in long baseline neutrino experiments, JHEP 03 (2011) 013 [Erratum ibid. 1105 (2011) 024] [arXiv:1010.3706] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    J.F. Beacom, N.F. Bell, D. Hooper, S. Pakvasa and T.J. Weiler, Measuring flavor ratios of high-energy astrophysical neutrinos, Phys. Rev. D 68 (2003) 093005 [Erratum ibid. D 72 (2005)019901] [hep-ph/0307025] [INSPIRE].ADSGoogle Scholar
  67. [67]
    J. Koskinen, private communication.Google Scholar
  68. [68]
    J.G. Learned and S. Pakvasa, Detecting tau-neutrino oscillations at PeV energies, Astropart. Phys. 3 (1995) 267 [hep-ph/9405296] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Institut für Theoretische Physik und AstrophysikUniversität WürzburgWürzburgGermany

Personalised recommendations