Journal of High Energy Physics

, 2011:103 | Cite as

Simple and realistic composite Higgs models in flat extra dimensions



We construct new composite Higgs/gauge-Higgs unification (GHU) models in flat space that overcome all the difficulties found in the past in attempting to construct models of this sort. The key ingredient is the introduction of large boundary kinetic terms for gauge (and fermion) fields. We focus our analysis on the electroweak symmetry breaking pattern and the electroweak precision tests and show how both are compatible with each other. Our models can be seen as effective TeV descriptions of analogue warped models. We point out that, as far as electroweak TeV scale physics is concerned, one can rely on simple and more flexible flat space models rather than considering their unavoidably more complicated warped space counterparts. The generic collider signatures of our models are essentially undistinguishable from those expected from composite Higgs/warped GHU models, namely a light Higgs, colored fermion resonances below the TeV scale and sizable deviations to the Higgs and top coupling.


Beyond Standard Model Field Theories in Higher Dimensions 


  1. [1]
    D.B. Fairlie, HiggsFields and the Determination of the Weinberg Angle, Phys. Lett. B 82 (1979) 97 [SPIRES].ADSGoogle Scholar
  2. [2]
    D.B. Fairlie, Two Consistent Calculations Of The Weinberg Angle, J. Phys. G5 (1979) L55.ADSGoogle Scholar
  3. [3]
    N.S. Manton, A New Six-Dimensional Approach to the Weinberg-Salam Model, Nucl. Phys. B 158 (1979) 141 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    P. Forgacs and N.S. Manton, Space-Time Symmetries in Gauge Theories, Commun. Math. Phys. 72 (1980) 15 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    Y. Hosotani, Dynamical Mass Generation by Compact Extra Dimensions, Phys. Lett. B 126 (1983) 309 [SPIRES].ADSGoogle Scholar
  6. [6]
    Y. Hosotani, Dynamical Gauge Symmetry Breaking as the Casimir Effect, Phys. Lett. B 129 (1983) 193 [SPIRES].ADSGoogle Scholar
  7. [7]
    Y. Hosotani, Dynamics of Nonintegrable Phases and Gauge Symmetry Breaking, Ann. Phys. 190 (1989) 233 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  9. [9]
    L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  10. [10]
    N. Arkani-Hamed, M. Porrati and L. Randall, Holography and phenomenology, JHEP 08 (2001) 017 [hep-th/0012148] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    R. Rattazzi and A. Zaffaroni, Comments on the holographic picture of the Randall-Sundrum model, JHEP 04 (2001) 021 [hep-th/0012248] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    M. Pérez-Victoria, Randall-Sundrum models and the regularized AdS/CFT correspondence, JHEP 05 (2001) 064 [hep-th/0105048] [SPIRES].CrossRefGoogle Scholar
  13. [13]
    R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    K. Agashe, R. Contino and A. Pomarol, The Minimal Composite Higgs Model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [SPIRES].ADSCrossRefGoogle Scholar
  15. [15]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].MathSciNetADSGoogle Scholar
  17. [17]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].MathSciNetMATHGoogle Scholar
  18. [18]
    D.B. Kaplan and H. Georgi, SU(2) × U(1) Breaking by Vacuum Misalignment, Phys. Lett. B 136 (1984) 183 [SPIRES].ADSGoogle Scholar
  19. [19]
    M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a Composite Higgs Model, Nucl. Phys. B 254 (1985) 299 [SPIRES].ADSCrossRefGoogle Scholar
  20. [20]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/Composite Phenomenology Simplified, JHEP 05 (2007) 074 [hep-ph/0612180] [SPIRES].ADSCrossRefGoogle Scholar
  22. [22]
    M.A. Luty, M. Porrati and R. Rattazzi, Strong interactions and stability in the DGP model, JHEP 09 (2003) 029 [hep-th/0303116] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    R. Barbieri, A. Pomarol and R. Rattazzi, Weakly coupled Higgsless theories and precision electroweak tests, Phys. Lett. B 591 (2004) 141 [hep-ph/0310285] [SPIRES].ADSGoogle Scholar
  24. [24]
    R. Contino and A. Pomarol, Holography for fermions, JHEP 11 (2004) 058 [hep-th/0406257] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    G. Panico and A. Wulzer, Effective Action and Holography in 5D Gauge Theories, JHEP 05 (2007) 060 [hep-th/0703287] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [SPIRES].ADSGoogle Scholar
  27. [27]
    R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [SPIRES].ADSCrossRefGoogle Scholar
  28. [28]
    F. del Aguila et al., Collider aspects of flavour physics at high Q, Eur. Phys. J. C 57 (2008) 183 [arXiv:0801.1800] [SPIRES].ADSGoogle Scholar
  29. [29]
    K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision tests, JHEP 08 (2003) 050 [hep-ph/0308036] [SPIRES].ADSCrossRefGoogle Scholar
  30. [30]
    K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for Z b anti-b, Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [SPIRES].ADSGoogle Scholar
  31. [31]
    M.S. Carena, E. Ponton, J. Santiago and C.E.M. Wagner, Light Kaluza-Klein states in Randall-Sundrum models with custodial SU(2), Nucl. Phys. B 759 (2006) 202 [hep-ph/0607106] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    M.S. Carena, E. Ponton, J. Santiago and C.E.M. Wagner, Electroweak constraints on warped models with custodial symmetry, Phys. Rev. D 76 (2007) 035006 [hep-ph/0701055] [SPIRES].ADSGoogle Scholar
  33. [33]
    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [SPIRES].ADSGoogle Scholar
  34. [34]
    A.D. Medina, N.R. Shah and C.E.M. Wagner, Gauge-Higgs Unification and Radiative Electroweak Symmetry Breaking in Warped Extra Dimensions, Phys. Rev. D 76 (2007) 095010 [arXiv:0706.1281] [SPIRES].ADSGoogle Scholar
  35. [35]
    G. Panico, E. Ponton, J. Santiago and M. Serone, Dark Matter and Electroweak Symmetry Breaking in Models with Warped Extra Dimensions, Phys. Rev. D 77 (2008) 115012 [arXiv:0801.1645] [SPIRES].ADSGoogle Scholar
  36. [36]
    M. Serone, Holographic Methods and Gauge-Higgs Unification in Flat Extra Dimensions, New J. Phys. 12 (2010) 075013 [arXiv:0909.5619] [SPIRES].ADSCrossRefGoogle Scholar
  37. [37]
    G. Panico, M. Serone and A. Wulzer, A model of electroweak symmetry breaking from a fifth dimension, Nucl. Phys. B 739 (2006) 186 [hep-ph/0510373] [SPIRES].ADSCrossRefGoogle Scholar
  38. [38]
    G. Panico, M. Serone and A. Wulzer, Electroweak symmetry breaking and precision tests with a fifth dimension, Nucl. Phys. B 762 (2007) 189 [hep-ph/0605292] [SPIRES].ADSCrossRefGoogle Scholar
  39. [39]
    M.S. Carena, T.M.P. Tait and C.E.M. Wagner, Branes and orbifolds are opaque, Acta Phys. Polon. B 33 (2002) 2355 [hep-ph/0207056] [SPIRES].MathSciNetADSGoogle Scholar
  40. [40]
    C.A. Scrucca, M. Serone and L. Silvestrini, Electroweak symmetry breaking and fermion masses from extra dimensions, Nucl. Phys. B 669 (2003) 128 [hep-ph/0304220] [SPIRES].ADSCrossRefGoogle Scholar
  41. [41]
    H. Georgi, A.K. Grant and G. Hailu, Brane couplings from bulk loops, Phys. Lett. B 506 (2001) 207 [hep-ph/0012379] [SPIRES].MathSciNetADSGoogle Scholar
  42. [42]
    P. Bamert, C.P. Burgess, J.M. Cline, D. London and E. Nardi, R(b) and new physics: A Comprehensive analysis, Phys. Rev. D 54 (1996) 4275 [hep-ph/9602438] [SPIRES].ADSGoogle Scholar
  43. [43]
    G. Altarelli and R. Barbieri, Vacuum polarization effects of new physics on electroweak processes, Phys. Lett. B 253 (1991) 161 [SPIRES].ADSGoogle Scholar
  44. [44]
    G. Altarelli, R. Barbieri and S. Jadach, Toward a model independent analysis of electroweak data, Nucl. Phys. B 369 (1992) 3 [Erratum ibid. B 376 (1992) 444] [SPIRES].ADSCrossRefGoogle Scholar
  45. [45]
    G. Altarelli, R. Barbieri and F. Caravaglios, Nonstandard analysis of electroweak precision data, Nucl. Phys. B 405 (1993) 3 [SPIRES].ADSGoogle Scholar
  46. [46]
    K. Agashe and R. Contino, The minimal composite Higgs model and electroweak precision tests, Nucl. Phys. B 742 (2006) 59 [hep-ph/0510164] [SPIRES].ADSCrossRefGoogle Scholar
  47. [47]
    R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432] [SPIRES].ADSGoogle Scholar
  48. [48]
    LEP collaboration, A Combination of preliminary electroweak measurements and constraints on the standard model, hep-ex/0412015 [SPIRES].
  49. [49]
    ALEPH collaboration, J. Alcaraz et al., A Combination of preliminary electroweak measurements and constraints on the standard model, hep-ex/0612034 [SPIRES].
  50. [50]
    C. Anastasiou, E. Furlan and J. Santiago, Realistic Composite Higgs Models, Phys. Rev. D 79 (2009) 075003 [arXiv:0901.2117] [SPIRES].ADSGoogle Scholar
  51. [51]
    Tevatron Electroweak Working Group and CDF and D0 collaboration, Combination of CDF and D0 Results on the Mass of the Top Quark, arXiv:0903.2503 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Giuliano Panico
    • 1
  • Mahmoud Safari
    • 2
  • Marco Serone
    • 2
    • 3
  1. 1.Institute for Theoretical PhysicsETH ZurichZurichSwitzerland
  2. 2.International School for Advanced Studies (SISSA) and Istituto Nazionale di Fisica Nucleare (INFN)TriesteItaly
  3. 3.Abdus Salam International Center for Theoretical Physics (ICTP)TriesteItaly

Personalised recommendations