Journal of High Energy Physics

, 2011:83 | Cite as

Complete off-shell effects in top quark pair hadroproduction with leptonic decay at next-to-leading order

  • Giuseppe Bevilacqua
  • Michał Czakon
  • Andreas van Hameren
  • Costas G. Papadopoulos
  • Małgorzata Worek
Open Access
Article

Abstract

Results for next-to-leading order QCD corrections to the \( pp\left( {p\bar{p}} \right) \to t\bar{t} \to {W^{+} }{W^{-} }b\bar{b} \to {e^{+} }{\nu_e}{\mu^{-} }{\bar{\nu }_\mu }b\bar{b} + X \) processes with complete off-shell effects are presented for the first time. Double-, single-and non-resonant top contributions of the order \( \mathcal{O}\left( {\alpha_s^3{\alpha^4}} \right) \) are consistently taken into account, which requires the introduction of a complex-mass scheme for unstable top quarks. Moreover, the intermediate W bosons are treated off-shell. Comparison to the narrow width approximation for top quarks, where non-factorizable corrections are not accounted for is performed. Besides the total cross section and its scale dependence, several differential distributions at the TeVatron run II and the LHC are given. In case of the TeVatron the forward-backward asymmetry of the top is recalculated afresh. With inclusive selection cuts, the forward-backward asymmetry amounts to \( A_{FB}^t = 0.051\pm 0.0013 \). Furthermore, the corrections with respect to leading order are positive and of the order 2.3% for the TeVatron and 47% for the LHC. A study of the scale dependence of our NLO predictions indicates that the residual theoretical uncertainty due to higher order corrections is 8% for the TeVatron and 9% for the LHC.

Keywords

Jets NLO Computations Hadronic Colliders QCD 

References

  1. [1]
    P. Nason, S. Dawson and R.K. Ellis, The total cross-section for the production of heavy quarks in hadronic collisions, Nucl. Phys. B 303 (1988) 607 [SPIRES].ADSCrossRefGoogle Scholar
  2. [2]
    W. Beenakker, H. Kuijf, W.L. van Neerven and J. Smith, QCD corrections to heavy quark production in \( p\bar{p} \) collisions, Phys. Rev. D 40 (1989) 54 [SPIRES].ADSGoogle Scholar
  3. [3]
    P. Nason, S. Dawson and R.K. Ellis, The one particle inclusive differential cross-section for heavy quark production in hadronic collisions, Nucl. Phys. B 327 (1989) 49 [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    W. Beenakker, W.L. van Neerven, R. Meng, G.A. Schuler and J. Smith, QCD corrections to heavy quark production in hadron hadron collisions, Nucl. Phys. B 351 (1991) 507 [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    W. Bernreuther, A. Brandenburg, Z.G. Si and P. Uwer, Top quark spin correlations at hadron colliders: predictions at next-to-leading order QCD, Phys. Rev. Lett. 87 (2001) 242002 [hep-ph/0107086] [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    W. Bernreuther, A. Brandenburg, Z.G. Si and P. Uwer, Top quark pair production and decay at hadron colliders, Nucl. Phys. B 690 (2004) 81 [hep-ph/0403035] [SPIRES].ADSCrossRefGoogle Scholar
  7. [7]
    W. Bernreuther and Z.-G. Si, Distributions and correlations for top quark pair production and decay at the Tevatron and LHC, Nucl. Phys. B 837 (2010) 90 [arXiv:1003.3926] [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    K. Melnikov and M. Schulze, NLO QCD corrections to top quark pair production and decay at hadron colliders, JHEP 08 (2009) 049 [arXiv:0907.3090] [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    M. Czakon and A. Mitov, Inclusive heavy flavor hadroproduction in NLO QCD: the exact analytic result, Nucl. Phys. B 824 (2010) 111 [arXiv:0811.4119] [SPIRES].ADSCrossRefGoogle Scholar
  10. [10]
    M. Czakon, Tops from light quarks: full mass dependence at two-loops in QCD, Phys. Lett. B 664 (2008) 307 [arXiv:0803.1400] [SPIRES].ADSGoogle Scholar
  11. [11]
    R. Bonciani, A. Ferroglia, T. Gehrmann, D. Maître and C. Studerus, Two-loop fermionic corrections to heavy-quark pair production: the quark-antiquark channel, JHEP 07 (2008) 129 [arXiv:0806.2301] [SPIRES].ADSCrossRefGoogle Scholar
  12. [12]
    C. Anastasiou and S.M. Aybat, The one-loop gluon amplitude for heavy-quark production at NNLO, Phys. Rev. D 78 (2008) 114006 [arXiv:0809.1355] [SPIRES].ADSGoogle Scholar
  13. [13]
    B. Kniehl, Z. Merebashvili, J.G. Korner and M. Rogal, Heavy quark pair production in gluon fusion at next-to-next-to-leading O(α s 4) order: one-loop, Phys. Rev. D 78 (2008) 094013 [arXiv:0809.3980] [SPIRES].ADSGoogle Scholar
  14. [14]
    R. Bonciani, A. Ferroglia, T. Gehrmann and C. Studerus, Two-loop planar corrections to heavy-quark pair production in the quark-antiquark channel, JHEP 08 (2009) 067 [arXiv:0906.3671] [SPIRES].ADSCrossRefGoogle Scholar
  15. [15]
    R. Bonciani, A. Ferroglia, T. Gehrmann, A. Manteuffel and C. Studerus, Two-loop leading color corrections to heavy-quark pair production in the gluon fusion channel, JHEP 01 (2011) 102 [arXiv:1011.6661] [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    M. Czakon and A. Mitov, On the soft-gluon resummation in top quark pair production at hadron colliders, Phys. Lett. B 680 (2009) 154 [arXiv:0812.0353] [SPIRES].ADSGoogle Scholar
  17. [17]
    N. Kidonakis, Two-loop soft anomalous dimensions and NNLL resummation for heavy quark production, Phys. Rev. Lett. 102 (2009) 232003 [arXiv:0903.2561] [SPIRES].ADSCrossRefGoogle Scholar
  18. [18]
    M. Beneke, P. Falgari and C. Schwinn, Soft radiation in heavy-particle pair production: all-order colour structure and two-loop anomalous dimension, Nucl. Phys. B 828 (2010) 69 [arXiv:0907.1443] [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    M. Czakon, A. Mitov and G.F. Sterman, Threshold resummation for top-pair hadroproduction to next-to-next-to-leading log, Phys. Rev. D 80 (2009) 074017 [arXiv:0907.1790] [SPIRES].ADSGoogle Scholar
  20. [20]
    M. Beneke, M. Czakon, P. Falgari, A. Mitov and C. Schwinn, Threshold expansion of the gg(qq) → QQ + X cross section at O(α s 4), Phys. Lett. B 690 (2010) 483 [arXiv:0911.5166] [SPIRES].ADSGoogle Scholar
  21. [21]
    V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Renormalization-group improved predictions for top-quark pair production at hadron colliders, JHEP 09 (2010) 097 [arXiv:1003.5827] [SPIRES].ADSCrossRefGoogle Scholar
  22. [22]
    N. Kidonakis, Next-to-next-to-leading soft-gluon corrections for the top quark cross section and transverse momentum distribution, Phys. Rev. D 82 (2010) 114030 [arXiv:1009.4935] [SPIRES].ADSGoogle Scholar
  23. [23]
    W. Beenakker et al., Higgs radiation off top quarks at the Tevatron and the LHC, Phys. Rev. Lett. 87 (2001) 201805 [hep-ph/0107081] [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    L. Reina, S. Dawson and D. Wackeroth, QCD corrections to associated \( t\bar{t}h \) production at the Tevatron, Phys. Rev. D 65 (2002) 053017 [hep-ph/0109066] [SPIRES].ADSGoogle Scholar
  25. [25]
    L. Reina and S. Dawson, Next-to-leading order results for \( t\bar{t}h \) production at the Tevatron, Phys. Rev. Lett. 87 (2001) 201804 [hep-ph/0107101] [SPIRES].ADSCrossRefGoogle Scholar
  26. [26]
    W. Beenakker et al., NLO QCD corrections to \( t\bar{t}\;H \) production in hadron collisions, Nucl. Phys. B 653 (2003) 151 [hep-ph/0211352] [SPIRES].ADSCrossRefGoogle Scholar
  27. [27]
    S. Dawson, L.H. Orr, L. Reina and D. Wackeroth, Associated top quark Higgs boson production at the LHC, Phys. Rev. D 67 (2003) 071503 [hep-ph/0211438] [SPIRES].ADSGoogle Scholar
  28. [28]
    S. Dawson, C. Jackson, L.H. Orr, L. Reina and D. Wackeroth, Associated Higgs production with top quarks at the Large Hadron Collider: NLO QCD corrections, Phys. Rev. D 68 (2003) 034022 [hep-ph/0305087] [SPIRES].ADSGoogle Scholar
  29. [29]
    SM and NLO Multileg Working Group collaboration, J.R. Andersen et al., The SM and NLO multileg working group: summary report, arXiv:1003.1241 [SPIRES].
  30. [30]
    S. Dittmaier, P. Uwer and S. Weinzierl, NLO QCD corrections to \( t\bar{t} + jet \) production at hadron colliders, Phys. Rev. Lett. 98 (2007) 262002 [hep-ph/0703120] [SPIRES].ADSCrossRefGoogle Scholar
  31. [31]
    S. Dittmaier, P. Uwer and S. Weinzierl, Hadronic top-quark pair production in association with a hard jet at next-to-leading order QCD: Phenomenological studies for the Tevatron and the LHC, Eur. Phys. J. C 59 (2009) 625 [arXiv:0810.0452] [SPIRES].ADSCrossRefGoogle Scholar
  32. [32]
    K. Melnikov and M. Schulze, NLO QCD corrections to top quark pair production in association with one hard jet at hadron colliders, Nucl. Phys. B 840 (2010) 129 [arXiv:1004.3284] [SPIRES].ADSCrossRefGoogle Scholar
  33. [33]
    A. Lazopoulos, T. McElmurry, K. Melnikov and F. Petriello, Next-to-leading order QCD corrections to \( t\bar{t}Z \) production at the LHC, Phys. Lett. B 666 (2008) 62 [arXiv:0804.2220] [SPIRES].ADSGoogle Scholar
  34. [34]
    D. Peng-Fei et al., QCD corrections to associated production of \( t\bar{t}\gamma \) at hadron colliders, arXiv:0907.1324 [SPIRES].
  35. [35]
    A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to top anti-top bottom anti-bottom production at the LHC: 1. Quark-antiquark annihilation, JHEP 08 (2008) 108 [arXiv:0807.1248] [SPIRES].ADSCrossRefGoogle Scholar
  36. [36]
    A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to \( pp \to t\bar{t}b\bar{b} + X \) at the LHC, Phys. Rev. Lett. 103 (2009) 012002 [arXiv:0905.0110] [SPIRES].ADSCrossRefGoogle Scholar
  37. [37]
    G. Bevilacqua, M. Czakon, C.G. Papadopoulos, R. Pittau and M. Worek, Assault on the NLO Wishlist: ppttbb, JHEP 09 (2009) 109 [arXiv:0907.4723] [SPIRES].ADSCrossRefGoogle Scholar
  38. [38]
    A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to top anti-top bottom anti-bottom production at the LHC: 2. Full hadronic results, JHEP 03 (2010) 021 [arXiv:1001.4006] [SPIRES].ADSCrossRefGoogle Scholar
  39. [39]
    G. Bevilacqua, M. Czakon, C.G. Papadopoulos and M. Worek, Dominant QCD backgrounds in Higgs boson analyses at the LHC: a study of \( pp \to t\bar{t} + 2 \) jets at next-to-leading order, Phys. Rev. Lett. 104 (2010) 162002 [arXiv:1002.4009] [SPIRES].ADSCrossRefGoogle Scholar
  40. [40]
    A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Predictions for all processes e + e → 4 fermions + γ, Nucl. Phys. B 560 (1999) 33 [hep-ph/9904472] [SPIRES].ADSCrossRefGoogle Scholar
  41. [41]
    A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e + e → 4 fermion processes: technical details and further results, Nucl. Phys. B 724 (2005) 247 [hep-ph/0505042] [SPIRES].ADSCrossRefGoogle Scholar
  42. [42]
    M. Czakon, C.G. Papadopoulos and M. Worek, Polarizing the dipoles, JHEP 08 (2009) 085 [arXiv:0905.0883] [SPIRES].ADSCrossRefGoogle Scholar
  43. [43]
    A. Kanaki and C.G. Papadopoulos, HELAC: a package to compute electroweak helicity amplitudes, Comput. Phys. Commun. 132 (2000) 306 [hep-ph/0002082] [SPIRES].ADSMATHCrossRefGoogle Scholar
  44. [44]
    A. Cafarella, C.G. Papadopoulos and M. Worek, Helac-Phegas: a generator for all parton level processes, Comput. Phys. Commun. 180 (2009) 1941 [arXiv:0710.2427] [SPIRES].ADSCrossRefGoogle Scholar
  45. [45]
    T. Gleisberg, F. Krauss, C.G. Papadopoulos, A. Schaelicke and S. Schumann, Cross sections for multi-particle final states at a linear collider, Eur. Phys. J. C 34 (2004) 173 [hep-ph/0311273] [SPIRES].ADSGoogle Scholar
  46. [46]
    C.G. Papadopoulos and M. Worek, Multi-parton cross sections at hadron colliders, Eur. Phys. J. C 50 (2007) 843 [hep-ph/0512150] [SPIRES].ADSCrossRefGoogle Scholar
  47. [47]
    J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [SPIRES].ADSCrossRefGoogle Scholar
  48. [48]
    C. Englert, B. Jager, M. Worek and D. Zeppenfeld, Observing strongly interacting vector boson systems at the CERN Large Hadron Collider, Phys. Rev. D 80 (2009) 035027 [arXiv:0810.4861] [SPIRES].ADSGoogle Scholar
  49. [49]
    S. Actis et al., Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data, Eur. Phys. J. C 66 (2010) 585 [arXiv:0912.0749] [SPIRES].CrossRefGoogle Scholar
  50. [50]
    A. van Hameren, PARNI for importance sampling and density estimation, Acta Phys. Polon. B 40 (2009) 259 [arXiv:0710.2448] [SPIRES].ADSGoogle Scholar
  51. [51]
    A. van Hameren, Kaleu: a general-purpose parton-level phase space generator, arXiv:1003.4953 [SPIRES].
  52. [52]
    C.G. Papadopoulos, PHEGAS: a phase space generator for automatic cross-section computation, Comput. Phys. Commun. 137 (2001) 247 [hep-ph/0007335] [SPIRES].ADSMATHCrossRefGoogle Scholar
  53. [53]
    MCFM — Monte Carlo for FeMtobarn processes, http://mcfm.fnal.gov/.
  54. [54]
    A. van Hameren, C.G. Papadopoulos and R. Pittau, Automated one-loop calculations: a proof of concept, JHEP 09 (2009) 106 [arXiv:0903.4665] [SPIRES].ADSCrossRefGoogle Scholar
  55. [55]
    G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [SPIRES].ADSCrossRefGoogle Scholar
  57. [57]
    P. Draggiotis, M.V. Garzelli, C.G. Papadopoulos and R. Pittau, Feynman rules for the rational part of the QCD 1-loop amplitudes, JHEP 04 (2009) 072 [arXiv:0903.0356] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    A. van Hameren, OneLOop: for the evaluation of one-loop scalar functions, arXiv:1007.4716 [SPIRES].
  59. [59]
    W. Beenakker et al., The Fermion loop scheme for finite width effects in e + e annihilation into four fermions, Nucl. Phys. B 500 (1997) 255 [hep-ph/9612260] [SPIRES].ADSCrossRefGoogle Scholar
  60. [60]
    E.N. Argyres et al., Stable calculations for unstable particles: Restoring gauge invariance, Phys. Lett. B 358 (1995) 339 [hep-ph/9507216] [SPIRES].ADSGoogle Scholar
  61. [61]
    S. Dittmaier, Separation of soft and collinear singularities from one-loop N-point integrals, Nucl. Phys. B 675 (2003) 447 [hep-ph/0308246] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  62. [62]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [hep-ph/9605323] [SPIRES].ADSCrossRefGoogle Scholar
  63. [63]
    S. Catani, S. Dittmaier, M.H. Seymour and Z. Trócsányi, The dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys. B 627 (2002) 189 [hep-ph/0201036] [SPIRES].ADSCrossRefGoogle Scholar
  64. [64]
    R. Kleiss and R. Pittau, Weight optimization in multichannel Monte Carlo, Comput. Phys. Commun. 83 (1994) 141 [hep-ph/9405257] [SPIRES].ADSCrossRefGoogle Scholar
  65. [65]
    M. Dinsdale, M. Ternick and S. Weinzierl, Parton showers from the dipole formalism, Phys. Rev. D 76 (2007) 094003 [arXiv:0709.1026] [SPIRES].ADSGoogle Scholar
  66. [66]
    S. Schumann and F. Krauss, A parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP 03 (2008) 038 [arXiv:0709.1027] [SPIRES].ADSCrossRefGoogle Scholar
  67. [67]
    Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].ADSGoogle Scholar
  68. [68]
    M. Jezabek and J.H. Kuhn, QCD corrections to semileptonic decays of heavy quarks, Nucl. Phys. B 314 (1989) 1 [SPIRES].ADSCrossRefGoogle Scholar
  69. [69]
    K.G. Chetyrkin, R. Harlander, T. Seidensticker and M. Steinhauser, Second order QCD corrections to Γ(tWb), Phys. Rev. D 60 (1999) 114015 [hep-ph/9906273] [SPIRES].ADSGoogle Scholar
  70. [70]
    S. Catani, Y.L. Dokshitzer and B.R. Webber, The K perpendicular clustering algorithm for jets in deep inelastic scattering and hadron collisions, Phys. Lett. B 285 (1992) 291 [SPIRES].ADSGoogle Scholar
  71. [71]
    S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [SPIRES].ADSCrossRefGoogle Scholar
  72. [72]
    S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [SPIRES].ADSGoogle Scholar
  73. [73]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [SPIRES].ADSCrossRefGoogle Scholar
  74. [74]
    Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [SPIRES].ADSCrossRefGoogle Scholar
  75. [75]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [SPIRES].ADSCrossRefGoogle Scholar
  76. [76]
    D. Stump et al., Inclusive jet production, parton distributions and the search for new physics, JHEP 10 (2003) 046 [hep-ph/0303013] [SPIRES].ADSCrossRefGoogle Scholar
  77. [77]
    F. Halzen, P. Hoyer and C.S. Kim, Forward-backward asymmetry of hadroproduced heavy quarks in QCD, Phys. Lett. B 195 (1987) 74 [SPIRES].ADSGoogle Scholar
  78. [78]
    J.H. Kuhn and G. Rodrigo, Charge asymmetry in hadroproduction of heavy quarks, Phys. Rev. Lett. 81 (1998) 49 [hep-ph/9802268] [SPIRES].ADSCrossRefGoogle Scholar
  79. [79]
    J.H. Kuhn and G. Rodrigo, Charge asymmetry of heavy quarks at hadron colliders, Phys. Rev. D 59 (1999) 054017 [hep-ph/9807420] [SPIRES].ADSGoogle Scholar
  80. [80]
    O. Antunano, J.H. Kuhn and G. Rodrigo, Top quarks, axigluons and charge asymmetries at hadron colliders, Phys. Rev. D 77 (2008) 014003 [arXiv:0709.1652] [SPIRES].ADSGoogle Scholar
  81. [81]
    CDF collaboration, T. Aaltonen et al., Measurement of the inclusive forward-backward asymmetry and its rapidity dependence A FBy) in \( t\bar{t} \) production in 5.3 f b −1 of TeVatron data, CDF-CONF-NOTE-10185 (2010).Google Scholar
  82. [82]
    DØ collaboration, V.M. Abazov et al., Measurement of the forward-backward production asymmetry of t and \( \bar{t} \) quarks in \( p\bar{p} \to t\bar{t} \) events, D0-CONF-NOTE-6062 (2010).Google Scholar
  83. [83]
    A. Denner, S. Dittmaier, S. Kallweit and S. Pozzorini, NLO QCD corrections to WWbb production at hadron colliders, arXiv:1012.3975 [SPIRES].

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Giuseppe Bevilacqua
    • 1
    • 2
  • Michał Czakon
    • 2
  • Andreas van Hameren
    • 3
  • Costas G. Papadopoulos
    • 1
  • Małgorzata Worek
    • 4
  1. 1.Institute of Nuclear PhysicsNCSR DemokritosAthensGreece
  2. 2.Institut für Theoretische Teilchenphysik und KosmologieRWTH Aachen UniversityAachenGermany
  3. 3.The H. Niewodniczański Institute of Nuclear PhysicsPolisch Academy of SciencesCracowPoland
  4. 4.Fachbereich C PhysikBergische Universität WuppertalWuppertalGermany

Personalised recommendations