Advertisement

Journal of High Energy Physics

, 2011:74 | Cite as

U-duality and non-BPS solutions

  • Gianguido Dall’AgataEmail author
  • Stefano Giusto
  • Clément Ruef
Article

Abstract

We derive the explicit action of the U-duality group of the STU model on both BPS and non-BPS extremal multi-center solutions. As the class of known non-BPS extremal solutions is not closed under U-duality, we generate in this way new solutions. These should represent the most general class of extremal non-BPS multi-center under-rotating solutions of the STU model.

Keywords

Black Holes in String Theory String Duality Extended Supersymmetry Supergravity Models 

References

  1. [1]
    F. Denef, Supergravity flows and D-brane stability, JHEP 08 (2000) 050 [hep-th/0005049] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    J. de Boer, S. El-Showk, I. Messamah and D. Van den Bleeken, Quantizing N = 2 multicenter solutions, JHEP 05 (2009) 002 [arXiv:0807.4556] [SPIRES].CrossRefGoogle Scholar
  3. [3]
    I. Bena and N.P. Warner, One ring to rule them all… And in the darkness bind them?, Adv. Theor. Math. Phys. 9 (2005) 667 [hep-th/0408106] [SPIRES].MathSciNetzbMATHGoogle Scholar
  4. [4]
    P. Berglund, e.g. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and black rings, JHEP 06 (2006) 007 [hep-th/0505167] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    I. Bena, N. Bobev, S. Giusto, C. Ruef and N.P. Warner, An infinite-dimensional family of black-hole microstate geometries, arXiv:1006.3497 [SPIRES].
  6. [6]
    S.D. Mathur, The fuzzball proposal for black holes: an elementary review, Fortsch. Phys. 53 (2005) 793 [hep-th/0502050] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. [7]
    I. Bena and N.P. Warner, Black holes, black rings and their microstates, Lect. Notes Phys. 755 (2008) 1 [hep-th/0701216] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    K. Skenderis and M. Taylor, The fuzzball proposal for black holes, Phys. Rept. 467 (2008) 117 [arXiv:0804.0552] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    B.D. Chowdhury and A. Virmani, Modave lectures on fuzzballs and emission from the D1-D5 system, arXiv:1001.1444 [SPIRES].
  10. [10]
    A. Ceresole and G. Dall’Agata, Flow equations for non-BPS extremal black holes, JHEP 03 (2007) 110 [hep-th/0702088] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    G. Lopes Cardoso, A. Ceresole, G. Dall’Agata et al., First-order flow equations for extremal black holes in very special geometry, JHEP 0710 (2007) 063 [arXiv:0706.3373] [SPIRES].CrossRefGoogle Scholar
  12. [12]
    J.P. Gauntlett, J.B. Gutowski, C.M. Hull, S. Pakis and H.S. Reall, All supersymmetric solutions of minimal supergravity in five dimensions, Class. Quant. Grav. 20 (2003) 4587 [hep-th/0209114] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. [13]
    J.B. Gutowski and H.S. Reall, General supersymmetric AdS 5 black holes, JHEP 04 (2004) 048 [hep-th/0401129] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    K. Goldstein and S. Katmadas, Almost BPS black holes, JHEP 05 (2009) 058 [arXiv:0812.4183] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    E. Bergshoeff, W. Chemissany, A. Ploegh, M. Trigiante and T. Van Riet, Generating geodesic flows and supergravity solutions, Nucl. Phys. B 812 (2009) 343 [arXiv:0806.2310] [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    W. Chemissany, J. Rosseel, M. Trigiante and T. Van Riet, The full integration of black hole solutions to symmetric supergravity theories, Nucl. Phys. B 830 (2010) 391 [arXiv:0903.2777] [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    G. Bossard, H. Nicolai and K.S. Stelle, Universal BPS structure of stationary supergravity solutions, JHEP 07 (2009) 003 [arXiv:0902.4438] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    G. Bossard and H. Nicolai, Multi-black holes from nilpotent Lie algebra orbits, Gen. Rel. Grav. 42 (2010) 509 [arXiv:0906.1987] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. [19]
    G. Bossard, Y. Michel and B. Pioline, Extremal black holes, nilpotent orbits and the true fake superpotential, JHEP 01 (2010) 038 [arXiv:0908.1742] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    S.-S. Kim, J.L. Hörnlund, J. Palmkvist and A. Virmani, Extremal solutions of the S 3 model and nilpotent orbits of G2(2), JHEP 08 (2010) 072 [arXiv:1004.5242] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    I. Bena, S. Giusto, C. Ruef and N.P. Warner, Supergravity solutions from floating branes, JHEP 03 (2010) 047 [arXiv:0910.1860] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    D. Lüst, F. Marchesano, L. Martucci and D. Tsimpis, Generalized non-supersymmetric flux vacua, JHEP 11 (2008) 021 [arXiv:0807.4540] [SPIRES].CrossRefGoogle Scholar
  23. [23]
    D. Cassani, S. Ferrara, A. Marrani, J.F. Morales and H. Samtleben, A special road to AdS vacua, JHEP 02 (2010) 027 [arXiv:0911.2708] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    I. Bena, G. Dall’Agata, S. Giusto, C. Ruef and N.P. Warner, Non-BPS black rings and black holes in Taub-NUT, JHEP 06 (2009) 015 [arXiv:0902.4526] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    I. Bena, S. Giusto, C. Ruef and N.P. Warner, Multi-center non-BPS black holes — the solution, JHEP 11 (2009) 032 [arXiv:0908.2121] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    S. Ferrara and A. Marrani, Matrix norms, BPS bounds and marginal stability in N = 8 supergravity, JHEP 12 (2010) 038 [arXiv:1009.3251] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  27. [27]
    S. Ferrara, A. Marrani and E. Orazi, Split attractor flowin N = 2 minimally coupled supergravity, arXiv:1010.2280 [SPIRES].
  28. [28]
    S. Ferrara, A. Marrani, E. Orazi, R. Stora and A. Yeranyan, Two-center black holes duality-invariants for STU model and its lower-rank descendants, arXiv:1011.5864 [SPIRES].
  29. [29]
    I. Bena, N. Bobev and N.P. Warner, Spectral flow and the spectrum of multi-center solutions, Phys. Rev. D 77 (2008) 125025 [arXiv:0803.1203] [SPIRES].MathSciNetADSGoogle Scholar
  30. [30]
    P. Galli, K. Goldstein, S. Katmadas and J. Perz, First-order flows and stabilisation equations for non-BPS extremal black holes, arXiv:1012.4020 [SPIRES].
  31. [31]
    I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes, Phys. Rev. D 74 (2006) 066001 [hep-th/0505166] [SPIRES].MathSciNetADSGoogle Scholar
  32. [32]
    K. Behrndt, R. Kallosh, J. Rahmfeld, M. Shmakova and W.K. Wong, STU black holes and string triality, Phys. Rev. D 54 (1996) 6293 [hep-th/9608059] [SPIRES].MathSciNetADSGoogle Scholar
  33. [33]
    R. Kallosh, N. Sivanandam and M. Soroush, Exact attractive non-BPS STU black holes, Phys. Rev. D 74 (2006) 065008 [hep-th/0606263] [SPIRES].MathSciNetADSGoogle Scholar
  34. [34]
    e.g. Gimon, F. Larsen and J. Simon, Black holes in supergravity: the non-BPS branch, JHEP 01 (2008) 040 [arXiv:0710.4967] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    S. Bellucci, S. Ferrara, A. Marrani and A. Yeranyan, STU black holes unveiled, arXiv:0807.3503 [SPIRES].
  36. [36]
    E. Bergshoeff, C.M. Hull and T. Ortín, Duality in the type-II superstring effective action, Nucl. Phys. B 451 (1995) 547 [hep-th/9504081] [SPIRES].ADSCrossRefGoogle Scholar
  37. [37]
    S.F. Hassan, T-duality, space-time spinors and RR fields in curved backgrounds, Nucl. Phys. B 568 (2000) 145 [hep-th/9907152] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    V. Balasubramanian, J. de Boer, E. Keski-Vakkuri and S.F. Ross, Supersymmetric conical defects: towards a string theoretic description of black hole formation, Phys. Rev. D 64 (2001) 064011 [hep-th/0011217] [SPIRES].ADSGoogle Scholar
  39. [39]
    J.M. Maldacena and L. Maoz, De-singularization by rotation, JHEP 12 (2002) 055 [hep-th/0012025] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    O. Lunin, Adding momentum to D1-D5 system, JHEP 04 (2004) 054 [hep-th/0404006] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    S. Giusto, S.D. Mathur and A. Saxena, Dual geometries for a set of 3-charge microstates, Nucl. Phys. B 701 (2004) 357 [hep-th/0405017] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    J. Ford, S. Giusto and A. Saxena, A class of BPS time-dependent 3-charge microstates from spectral flow, Nucl. Phys. B 790 (2008) 258 [hep-th/0612227] [SPIRES].MathSciNetADSGoogle Scholar
  43. [43]
    J.H. Al-Alawi and S.F. Ross, Spectral flow of the non-supersymmetric microstates of the D1-D5-K K system, JHEP 10 (2009) 082 [arXiv:0908.0417] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    S. Ferrara and S. Sabharwal, Dimensional reduction of type II superstrings, Class. Quant. Grav. 6 (1989) L77 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    M. Bodner, A.C. Cadavid and S. Ferrara, (2, 2) vacuum configurations for type IIA superstrings: N = 2 supergravity Lagrangians and algebraic geometry, Class. Quant. Grav. 8 (1991) 789 [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  46. [46]
    B. de Wit, F. Vanderseypen and A. Van Proeyen, Symmetry structure of special geometries, Nucl. Phys. B 400 (1993) 463 [hep-th/9210068] [SPIRES].ADSCrossRefGoogle Scholar
  47. [47]
    C. Toldo, Black holes and duality, Master thesis, Padua university, Padua Italy (2010).Google Scholar
  48. [48]
    D. Rasheed, The rotating dyonic black holes of Kaluza-Klein theory, Nucl. Phys. B 454 (1995) 379 [hep-th/9505038] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    F. Larsen, Kaluza-Klein black holes in string theory, hep-th/0002166 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Gianguido Dall’Agata
    • 1
    • 2
    Email author
  • Stefano Giusto
    • 3
    • 4
  • Clément Ruef
    • 5
  1. 1.Dipartimento di Fisica “Galileo Galilei”Università di PadovaPadovaItaly
  2. 2.INFN, Sezione di PadovaPadovaItaly
  3. 3.Dipartimento di FisicaUniversità di GenovaGenovaItaly
  4. 4.INFN, Sezione di GenovaGenovaItaly
  5. 5.Max Planck Institute for GravitationAlbert Einstein InstituteGolmGermany

Personalised recommendations