Journal of High Energy Physics

, 2011:62 | Cite as

Ultraviolet completion of flavour models

  • Ivo de Medeiros Varzielas
  • Luca MerloEmail author


Effective Flavour Models do not address questions related to the nature of the fundamental renormalisable theory at high energies. We study the ultraviolet completion of Flavour Models, which in general has the advantage of improving the predictivity of the effective models. In order to illustrate the important features we provide minimal completions for two known A4 models. We discuss the phenomenological implications of the explicit completions, such as lepton flavour violating contributions that arise through the exchange of messenger fields.


Beyond Standard Model Neutrino Physics Discrete and Finite Symmetries Global Symmetries 


  1. [1]
    I. de Medeiros Varzielas and G.G. Ross, SU(3) family symmetry and neutrino bi-tri-maximal mixing, Nucl. Phys. B 733 (2006) 31 [hep-ph/0507176] [SPIRES].ADSCrossRefGoogle Scholar
  2. [2]
    S.F. King and M. Malinsky, Towards a complete theory of fermion masses and mixings with SO(3) family symmetry and 5D SO(10) unification, JHEP 11 (2006) 071 [hep-ph/0608021] [SPIRES].ADSCrossRefGoogle Scholar
  3. [3]
    E. Ma and G. Rajasekaran, Softly broken A 4 symmetry for nearly degenerate neutrino masses, Phys. Rev. D 64 (2001) 113012 [hep-ph/0106291] [SPIRES].ADSGoogle Scholar
  4. [4]
    K.S. Babu, E. Ma and J.W.F. Valle, Underlying A 4 symmetry for the neutrino mass matrix and the quark mixing matrix, Phys. Lett. B 552 (2003) 207 [hep-ph/0206292] [SPIRES].ADSGoogle Scholar
  5. [5]
    M. Hirsch, J.C. Romao, S. Skadhauge, J.W.F. Valle and A. Villanova del Moral, Degenerate neutrinos from a supersymmetric A 4 model, hep-ph/0312244 [SPIRES].
  6. [6]
    G. Altarelli and F. Feruglio, Discrete flavor symmetries and models of neutrino mixing, Rev. Mod. Phys. 82 (2010) 2701 [arXiv:1002.0211] [SPIRES].ADSCrossRefGoogle Scholar
  7. [7]
    P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [SPIRES].ADSGoogle Scholar
  8. [8]
    Z.-z. Xing, Nearly tri-bimaximal neutrino mixing and CP-violation, Phys. Lett. B 533 (2002) 85 [hep-ph/0204049] [SPIRES].ADSGoogle Scholar
  9. [9]
    G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A.M. Rotunno, Hints of θ13 > 0 from global neutrino data analysis, Phys. Rev. Lett. 101 (2008) 141801 [arXiv:0806.2649] [SPIRES].ADSCrossRefGoogle Scholar
  10. [10]
    T. Schwetz, M.A. Tortola and J.W.F. Valle, Three-flavour neutrino oscillation update, New J. Phys. 10 (2008) 113011 [arXiv:0808.2016] [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    M. Maltoni and T. Schwetz, Three-flavour neutrino oscillation update and comments on possible hints for a non-zero θ13, PoS(IDM2008)072 [arXiv:0812.3161] [SPIRES].
  12. [12]
    G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A.M. Rotunno, What we (would like to) know about the neutrino mass, in the proceedings of 4th International Workshop on Neutrino Oscillations in Venice: Ten Years after the Neutrino Oscillations, April 15–18, Venice, Italy (2008), arXiv:0809.2936 [SPIRES].
  13. [13]
    M.C. Gonzalez-Garcia, M. Maltoni and J. Salvado, Updated global fit to three neutrino mixing: status of the hints of θ13 > 0, JHEP 04 (2010) 056 [arXiv:1001.4524] [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    A. Gando et al., Constraints on θ13 from a three-flavor oscillation analysis of reactor antineutrinos at KamLAND, arXiv:1009.4771 [SPIRES].
  15. [15]
    G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions, Nucl. Phys. B 720 (2005) 64 [hep-ph/0504165] [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing, A 4 and the modular symmetry, Nucl. Phys. B 741 (2006) 215 [hep-ph/0512103] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    C.D. Froggatt and H.B. Nielsen, Hierarchy of quark masses, Cabibbo angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [SPIRES].ADSCrossRefGoogle Scholar
  18. [18]
    G.G. Ross and O. Vives, Yukawa structure, flavour and CP-violation in supergravity, Phys. Rev. D 67 (2003) 095013 [hep-ph/0211279] [SPIRES].ADSGoogle Scholar
  19. [19]
    I. de Medeiros Varzielas and G.G. Ross, Family symmetries and the SUSY flavour problem, hep-ph/0612220 [SPIRES].
  20. [20]
    F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Lepton flavour violation in models with A 4 flavour symmetry, Nucl. Phys. B 809 (2009) 218 [arXiv:0807.3160] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Lepton flavour violation in a supersymmetric model with A 4 flavour symmetry, arXiv:0911.3874 [SPIRES].
  22. [22]
    F. Feruglio, C. Hagedorn and L. Merlo, Vacuum alignment in SUSY A 4 models, JHEP 03 (2010) 084 [arXiv:0910.4058] [SPIRES].ADSCrossRefGoogle Scholar
  23. [23]
    F. Feruglio and A. Paris, Rare muon and tau decays in A 4 models, Nucl. Phys. B 840 (2010) 405 [arXiv:1005.5526] [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    E. Bertuzzo, P. Di Bari, F. Feruglio and E. Nardi, Flavor symmetries, leptogenesis and the absolute neutrino mass scale, JHEP 11 (2009) 036 [arXiv:0908.0161] [SPIRES].ADSCrossRefGoogle Scholar
  25. [25]
    D. Aristizabal Sierra, F. Bazzocchi, I. de Medeiros Varzielas, L. Merlo and S. Morisi, Tri-bimaximal lepton mixing and leptogenesis, Nucl. Phys. B 827 (2010) 34 [arXiv:0908.0907] [SPIRES].ADSCrossRefGoogle Scholar
  26. [26]
    S.F. King, I.N.R. Peddie, G.G. Ross, L. Velasco-Sevilla and O. Vives, Kähler corrections and softly broken family symmetries, JHEP 07 (2005) 049 [hep-ph/0407012] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    C. Hagedorn, E. Molinaro and S.T. Petcov, Charged lepton flavour violating radiative decaysi → ℓj + γ in see-saw models with A 4 symmetry, JHEP 02 (2010) 047 [arXiv:0911.3605] [SPIRES].ADSCrossRefGoogle Scholar
  28. [28]
    G. Altarelli and D. Meloni, A simplest A 4 model for tri-bimaximal neutrino mixing, J. Phys. G 36 (2009) 085005 [arXiv:0905.0620] [SPIRES].ADSGoogle Scholar
  29. [29]
    Y. Lin, A predictive A 4 model, charged lepton hierarchy and tri-bimaximal sum rule, Nucl. Phys. B 813 (2009) 91 [arXiv:0804.2867] [SPIRES].ADSCrossRefGoogle Scholar
  30. [30]
    M. Hamermesh, Group theory and its application to physical problems, Addison-Wesley Publishing Company, U.S.A. (1962).zbMATHGoogle Scholar
  31. [31]
    J.F. Cornwell, Group theory in physics: an introduction, Academic Press, U.S.A. (1997).zbMATHGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Fakultät für PhysikTechnische Universität DortmundDortmundGermany
  2. 2.Physik-DepartmentTechnische Universität MünchenGarchingGermany
  3. 3.TUM Institute of Advanced StudyGarchingGermany

Personalised recommendations