Skip to main content

Holography for Schrödinger backgrounds

Abstract

We discuss holography for Schrödinger solutions of both topologically massive gravity in three dimensions and massive vector theories in (d + 1) dimensions. In both cases the dual field theory can be viewed as a d-dimensional conformal field theory (two dimensional in the case of TMG) deformed by certain operators that respect the Schrödinger symmetry. These operators are irrelevant from the viewpoint of the relativistic conformal group but they are exactly marginal with respect to the non-relativistic conformal group. The spectrum of linear fluctuations around the background solutions corresponds to operators that are labeled by their scaling dimension and the lightcone momentum k v . We set up the holographic dictionary and compute 2-point functions of these operators both holographically and in field theory using conformal perturbation theory and find agreement. The counterterms needed for holographic renormalization are non-local in the v lightcone direction.

References

  1. [1]

    D.T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schroedinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  2. [2]

    K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  3. [3]

    C. Duval, G.W. Gibbons and P. Horvathy, Celestial mechanics, conformal structures and gravitational waves, Phys. Rev. D 43 (1991) 3907 [hep-th/0512188] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  4. [4]

    C. Duval, M. Hassaine and P.A. Horvathy, The geometry of Schrödinger symmetry in gravity background/non-relativistic CFT, Annals Phys. 324 (2009) 1158 [arXiv:0809.3128] [SPIRES].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  5. [5]

    J. Maldacena, D. Martelli and Y. Tachikawa, Comments on string theory backgrounds with non-relativistic conformal symmetry, JHEP 10 (2008) 072 [arXiv:0807.1100] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  6. [6]

    K. Balasubramanian and J. McGreevy, The particle number in Galilean holography, JHEP 01 (2011) 137 [arXiv:1007.2184] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  7. [7]

    G. Burdet, M. Perrin and P. Sorba, About the non-relativistic structure of the conformal algebra, Commun. Math. Phys, 34 (1973) 85.

    MathSciNet  ADS  MATH  Article  Google Scholar 

  8. [8]

    E. Barnes, D. Vaman and C. Wu, Holographic real-time non-relativistic correlators at zero and finite temperature, Phys. Rev. D 82 (2010) 125042 [arXiv:1007.1644] [SPIRES].

    ADS  Google Scholar 

  9. [9]

    M. Henkel, Schrödinger invariance in strongly anisotropic critical systems, J. Stat. Phys. 75 (1994) 1023 [hep-th/9310081] [SPIRES].

    ADS  MATH  Article  Google Scholar 

  10. [10]

    K. Skenderis, M. Taylor and B.C. van Rees, Topologically massive gravity and the AdS/CFT correspondence, JHEP 09 (2009) 045 [arXiv:0906.4926] [SPIRES].

    ADS  Article  Google Scholar 

  11. [11]

    K. Skenderis, M. Taylor and B.C. van Rees, AdS boundary conditions and the topologically massive gravity/CFT correspondence, arXiv:0909.5617 [SPIRES].

  12. [12]

    K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [SPIRES].

    MathSciNet  MATH  Article  Google Scholar 

  13. [13]

    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  14. [14]

    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  15. [15]

    W.D. Goldberger, AdS/CFT duality for non-relativistic field theory, JHEP 03 (2009) 069 [arXiv:0806.2867] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  16. [16]

    P. Hořava and C.M. Melby-Thompson, Anisotropic conformal infinity, arXiv:0909.3841 [SPIRES].

  17. [17]

    C.P. Herzog, M. Rangamani and S.F. Ross, Heating up galilean holography, JHEP 11 (2008) 080 [arXiv:0807.1099] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  18. [18]

    S.F. Ross and O. Saremi, Holographic stress tensor for non-relativistic theories, JHEP 09 (2009) 009 [arXiv:0907.1846] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  19. [19]

    A. Adams, K. Balasubramanian and J. McGreevy, Hot spacetimes for cold atoms, JHEP 11 (2008) 059 [arXiv:0807.1111] [SPIRES].

    ADS  Article  Google Scholar 

  20. [20]

    A. Bergman and O.J. Ganor, Dipoles, twists and noncommutative gauge theory, JHEP 10 (2000) 018 [hep-th/0008030] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  21. [21]

    K. Dasgupta, O.J. Ganor and G. Rajesh, Vector deformations of N = 4 super-Yang-Mills theory, pinned branes and arched strings, JHEP 04 (2001) 034 [hep-th/0010072] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  22. [22]

    A. Bergman, K. Dasgupta, O.J. Ganor, J.L. Karczmarek and G. Rajesh, Nonlocal field theories and their gravity duals, Phys. Rev. D 65 (2002) 066005 [hep-th/0103090] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  23. [23]

    D. Anninos, W. Li, M. Padi, W. Song and A. Strominger, Warped AdS 3 black holes, JHEP 03 (2009) 130 [arXiv:0807.3040] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  24. [24]

    M. Blau, J. Hartong and B. Rollier, Geometry of Schrödinger space-times, global coordinates and harmonic trapping, JHEP 07 (2009) 027 [arXiv:0904.3304] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  25. [25]

    S.A. Hartnoll and K. Yoshida, Families of IIB duals for nonrelativistic CFTs, JHEP 12 (2008) 071 [arXiv:0810.0298] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  26. [26]

    J.P. Gauntlett, S. Kim, O. Varela and D. Waldram, Consistent supersymmetric Kaluza-Klein truncations with massive modes, JHEP 04 (2009) 102 [arXiv:0901.0676] [SPIRES].

    ADS  Article  Google Scholar 

  27. [27]

    A. Donos and J.P. Gauntlett, Supersymmetric solutions for non-relativistic holography, JHEP 03 (2009) 138 [arXiv:0901.0818] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  28. [28]

    E. O Colgain and H. Yavartanoo, NR CFT 3 duals in M-theory, JHEP 09 (2009) 002 [arXiv:0904.0588] [SPIRES].

    MathSciNet  Article  Google Scholar 

  29. [29]

    N. Bobev, A. Kundu and K. Pilch, Supersymmetric IIB solutions with Schrödinger symmetry, JHEP 07 (2009) 107 [arXiv:0905.0673] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  30. [30]

    A. Donos and J.P. Gauntlett, Solutions of type IIB and D = 11 supergravity with Schrödinger(z) symmetry, JHEP 07 (2009) 042 [arXiv:0905.1098] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  31. [31]

    A. Donos and J.P. Gauntlett, Schrödinger invariant solutions of type IIB with enhanced supersymmetry, JHEP 10 (2009) 073 [arXiv:0907.1761] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  32. [32]

    N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  33. [33]

    S. Minwalla, M. Van Raamsdonk and N. Seiberg, Noncommutative perturbative dynamics, JHEP 02 (2000) 020 [hep-th/9912072] [SPIRES].

    ADS  Article  Google Scholar 

  34. [34]

    O. Aharony, J. Gomis and T. Mehen, On theories with light-like noncommutativity, JHEP 09 (2000) 023 [hep-th/0006236] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  35. [35]

    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of spacetime and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [SPIRES].

    ADS  MATH  Article  Google Scholar 

  36. [36]

    M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys. B 631 (2002) 159 [hep-th/0112119] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  37. [37]

    I. Papadimitriou and K. Skenderis, AdS/CFT correspondence and geometry, hep-th/0404176 [SPIRES].

  38. [38]

    I. Papadimitriou and K. Skenderis, Correlation functions in holographic RG flows, JHEP 10 (2004) 075 [hep-th/0407071] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  39. [39]

    D.Z. Freedman, K. Johnson and J.I. Latorre, Differential regularization and renormalization: a new method of calculation in quantum field theory, Nucl. Phys. B 371 (1992) 353 [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  40. [40]

    A. Karch, A. O’Bannon and K. Skenderis, Holographic renormalization of probe D-branes in AdS/CFT, JHEP 04 (2006) 015 [hep-th/0512125] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  41. [41]

    R.N.C. Costa and M. Taylor, Holography for chiral scale-invariant models, arXiv:1010.4800 [SPIRES].

  42. [42]

    S. Olmez, O. Sarioglu and B. Tekin, Mass and angular momentum of asymptotically AdS or flat solutions in the topologically massive gravity, Class. Quant. Grav. 22 (2005) 4355 [gr-qc/0507003] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  43. [43]

    D.D.K. Chow, C.N. Pope and E. Sezgin, Classification of solutions in topologically massive gravity, Class. Quant. Grav. 27 (2010) 105001 [arXiv:0906.3559] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  44. [44]

    D. Anninos, G. Compere, S. de Buyl, S. Detournay and M. Guica, The curious case of null warped space, JHEP 11 (2010) 119 [arXiv:1005.4072] [SPIRES].

    ADS  Article  Google Scholar 

  45. [45]

    K. Skenderis and M. Taylor, Kaluza-Klein holography, JHEP 05 (2006) 057 [hep-th/0603016] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  46. [46]

    K. Skenderis and M. Taylor, Holographic coulomb branch vevs, JHEP 08 (2006) 001 [hep-th/0604169] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  47. [47]

    G. Arutyunov and S. Frolov, Some cubic couplings in type IIB supergravity on AdS 5 × S 5 and three-point functions in SYM(4) at large-N, Phys. Rev. D 61 (2000) 064009 [hep-th/9907085] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  48. [48]

    S. Deser and X. Xiang, Canonical formulations of full nonlinear topologically massive gravity, Phys. Lett. B 263 (1991) 39 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  49. [49]

    I.L. Buchbinder, S.L. Lyahovich and V.A. Krychtin, Canonical quantization of topologically massive gravity, Class. Quant. Grav. 10 (1993) 2083 [SPIRES].

    ADS  MATH  Article  Google Scholar 

  50. [50]

    K. Hotta, Y. Hyakutake, T. Kubota and H. Tanida, Brown-Henneaux’s canonical approach to topologically massive gravity, JHEP 07 (2008) 066 [arXiv:0805.2005] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  51. [51]

    M. Blau, J. Hartong and B. Rollier, Geometry of Schrödinger space-times II: particle and field probes of the causal structure, JHEP 07 (2010) 069 [arXiv:1005.0760] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  52. [52]

    K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality, Phys. Rev. Lett. 101 (2008) 081601 [arXiv:0805.0150] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  53. [53]

    K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality: prescription, renormalization and examples, JHEP 05 (2009) 085 [arXiv:0812.2909] [SPIRES].

    ADS  Article  Google Scholar 

  54. [54]

    R.G. Leigh and N.N. Hoang, Real-time correlators and non-relativistic holography, JHEP 11 (2009) 010 [arXiv:0904.4270] [SPIRES].

    ADS  Article  Google Scholar 

  55. [55]

    C.A. Fuertes and S. Moroz, Correlation functions in the non-relativistic AdS/CFT correspondence, Phys. Rev. D 79 (2009) 106004 [arXiv:0903.1844] [SPIRES].

    ADS  Google Scholar 

  56. [56]

    A. Volovich and C. Wen, Correlation functions in non-relativistic holography, JHEP 05 (2009) 087 [arXiv:0903.2455] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  57. [57]

    B. Chen and Z.-b. Xu, Quasi-normal modes of warped black holes and warped AdS/CFT correspondence, JHEP 11 (2009) 091 [arXiv:0908.0057] [SPIRES].

    ADS  Article  Google Scholar 

  58. [58]

    B. Chen, B. Ning and Z.-b. Xu, Real-time correlators in warped AdS/CFT correspondence, JHEP 02 (2010) 031 [arXiv:0911.0167] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  59. [59]

    D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Correlation functions in the CFT(d)/AdS(d + 1) correspondence, Nucl. Phys. B 546 (1999) 96 [hep-th/9804058] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  60. [60]

    I. Papadimitriou and K. Skenderis, Thermodynamics of asymptotically locally AdS spacetimes, JHEP 08 (2005) 004 [hep-th/0505190] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  61. [61]

    I. Papadimitriou, Holographic renormalization as a canonical transformation, arXiv:1007.4592 [SPIRES].

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marika Taylor.

Additional information

ArXiv ePrint: 1008.1991

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Guica, M., Skenderis, K., Taylor, M. et al. Holography for Schrödinger backgrounds. J. High Energ. Phys. 2011, 56 (2011). https://doi.org/10.1007/JHEP02(2011)056

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2011)056

Keywords

  • Gauge-gravity correspondence
  • AdS-CFT Correspondence
  • Holography and condensed matter physics (AdS/CMT)