Journal of High Energy Physics

, 2011:56 | Cite as

Holography for Schrödinger backgrounds

  • Monica Guica
  • Kostas Skenderis
  • Marika Taylor
  • Balt C. van Rees
Open Access


We discuss holography for Schrödinger solutions of both topologically massive gravity in three dimensions and massive vector theories in (d + 1) dimensions. In both cases the dual field theory can be viewed as a d-dimensional conformal field theory (two dimensional in the case of TMG) deformed by certain operators that respect the Schrödinger symmetry. These operators are irrelevant from the viewpoint of the relativistic conformal group but they are exactly marginal with respect to the non-relativistic conformal group. The spectrum of linear fluctuations around the background solutions corresponds to operators that are labeled by their scaling dimension and the lightcone momentum k v . We set up the holographic dictionary and compute 2-point functions of these operators both holographically and in field theory using conformal perturbation theory and find agreement. The counterterms needed for holographic renormalization are non-local in the v lightcone direction.


Gauge-gravity correspondence AdS-CFT Correspondence Holography and condensed matter physics (AdS/CMT) 


  1. [1]
    D.T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schroedinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [SPIRES].MathSciNetADSGoogle Scholar
  2. [2]
    K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    C. Duval, G.W. Gibbons and P. Horvathy, Celestial mechanics, conformal structures and gravitational waves, Phys. Rev. D 43 (1991) 3907 [hep-th/0512188] [SPIRES].MathSciNetADSGoogle Scholar
  4. [4]
    C. Duval, M. Hassaine and P.A. Horvathy, The geometry of Schrödinger symmetry in gravity background/non-relativistic CFT, Annals Phys. 324 (2009) 1158 [arXiv:0809.3128] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. [5]
    J. Maldacena, D. Martelli and Y. Tachikawa, Comments on string theory backgrounds with non-relativistic conformal symmetry, JHEP 10 (2008) 072 [arXiv:0807.1100] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    K. Balasubramanian and J. McGreevy, The particle number in Galilean holography, JHEP 01 (2011) 137 [arXiv:1007.2184] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    G. Burdet, M. Perrin and P. Sorba, About the non-relativistic structure of the conformal algebra, Commun. Math. Phys, 34 (1973) 85.MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. [8]
    E. Barnes, D. Vaman and C. Wu, Holographic real-time non-relativistic correlators at zero and finite temperature, Phys. Rev. D 82 (2010) 125042 [arXiv:1007.1644] [SPIRES].ADSGoogle Scholar
  9. [9]
    M. Henkel, Schrödinger invariance in strongly anisotropic critical systems, J. Stat. Phys. 75 (1994) 1023 [hep-th/9310081] [SPIRES].ADSzbMATHCrossRefGoogle Scholar
  10. [10]
    K. Skenderis, M. Taylor and B.C. van Rees, Topologically massive gravity and the AdS/CFT correspondence, JHEP 09 (2009) 045 [arXiv:0906.4926] [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    K. Skenderis, M. Taylor and B.C. van Rees, AdS boundary conditions and the topologically massive gravity/CFT correspondence, arXiv:0909.5617 [SPIRES].
  12. [12]
    K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [SPIRES].MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].MathSciNetADSGoogle Scholar
  14. [14]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].MathSciNetzbMATHGoogle Scholar
  15. [15]
    W.D. Goldberger, AdS/CFT duality for non-relativistic field theory, JHEP 03 (2009) 069 [arXiv:0806.2867] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    P. Hořava and C.M. Melby-Thompson, Anisotropic conformal infinity, arXiv:0909.3841 [SPIRES].
  17. [17]
    C.P. Herzog, M. Rangamani and S.F. Ross, Heating up galilean holography, JHEP 11 (2008) 080 [arXiv:0807.1099] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    S.F. Ross and O. Saremi, Holographic stress tensor for non-relativistic theories, JHEP 09 (2009) 009 [arXiv:0907.1846] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    A. Adams, K. Balasubramanian and J. McGreevy, Hot spacetimes for cold atoms, JHEP 11 (2008) 059 [arXiv:0807.1111] [SPIRES].ADSCrossRefGoogle Scholar
  20. [20]
    A. Bergman and O.J. Ganor, Dipoles, twists and noncommutative gauge theory, JHEP 10 (2000) 018 [hep-th/0008030] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    K. Dasgupta, O.J. Ganor and G. Rajesh, Vector deformations of N = 4 super-Yang-Mills theory, pinned branes and arched strings, JHEP 04 (2001) 034 [hep-th/0010072] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    A. Bergman, K. Dasgupta, O.J. Ganor, J.L. Karczmarek and G. Rajesh, Nonlocal field theories and their gravity duals, Phys. Rev. D 65 (2002) 066005 [hep-th/0103090] [SPIRES].MathSciNetADSGoogle Scholar
  23. [23]
    D. Anninos, W. Li, M. Padi, W. Song and A. Strominger, Warped AdS 3 black holes, JHEP 03 (2009) 130 [arXiv:0807.3040] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    M. Blau, J. Hartong and B. Rollier, Geometry of Schrödinger space-times, global coordinates and harmonic trapping, JHEP 07 (2009) 027 [arXiv:0904.3304] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    S.A. Hartnoll and K. Yoshida, Families of IIB duals for nonrelativistic CFTs, JHEP 12 (2008) 071 [arXiv:0810.0298] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    J.P. Gauntlett, S. Kim, O. Varela and D. Waldram, Consistent supersymmetric Kaluza-Klein truncations with massive modes, JHEP 04 (2009) 102 [arXiv:0901.0676] [SPIRES].ADSCrossRefGoogle Scholar
  27. [27]
    A. Donos and J.P. Gauntlett, Supersymmetric solutions for non-relativistic holography, JHEP 03 (2009) 138 [arXiv:0901.0818] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    E. O Colgain and H. Yavartanoo, NR CFT 3 duals in M-theory, JHEP 09 (2009) 002 [arXiv:0904.0588] [SPIRES].MathSciNetCrossRefGoogle Scholar
  29. [29]
    N. Bobev, A. Kundu and K. Pilch, Supersymmetric IIB solutions with Schrödinger symmetry, JHEP 07 (2009) 107 [arXiv:0905.0673] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    A. Donos and J.P. Gauntlett, Solutions of type IIB and D = 11 supergravity with Schrödinger(z) symmetry, JHEP 07 (2009) 042 [arXiv:0905.1098] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    A. Donos and J.P. Gauntlett, Schrödinger invariant solutions of type IIB with enhanced supersymmetry, JHEP 10 (2009) 073 [arXiv:0907.1761] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    S. Minwalla, M. Van Raamsdonk and N. Seiberg, Noncommutative perturbative dynamics, JHEP 02 (2000) 020 [hep-th/9912072] [SPIRES].ADSCrossRefGoogle Scholar
  34. [34]
    O. Aharony, J. Gomis and T. Mehen, On theories with light-like noncommutativity, JHEP 09 (2000) 023 [hep-th/0006236] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of spacetime and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [SPIRES].ADSzbMATHCrossRefGoogle Scholar
  36. [36]
    M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys. B 631 (2002) 159 [hep-th/0112119] [SPIRES].MathSciNetADSGoogle Scholar
  37. [37]
    I. Papadimitriou and K. Skenderis, AdS/CFT correspondence and geometry, hep-th/0404176 [SPIRES].
  38. [38]
    I. Papadimitriou and K. Skenderis, Correlation functions in holographic RG flows, JHEP 10 (2004) 075 [hep-th/0407071] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    D.Z. Freedman, K. Johnson and J.I. Latorre, Differential regularization and renormalization: a new method of calculation in quantum field theory, Nucl. Phys. B 371 (1992) 353 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    A. Karch, A. O’Bannon and K. Skenderis, Holographic renormalization of probe D-branes in AdS/CFT, JHEP 04 (2006) 015 [hep-th/0512125] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    R.N.C. Costa and M. Taylor, Holography for chiral scale-invariant models, arXiv:1010.4800 [SPIRES].
  42. [42]
    S. Olmez, O. Sarioglu and B. Tekin, Mass and angular momentum of asymptotically AdS or flat solutions in the topologically massive gravity, Class. Quant. Grav. 22 (2005) 4355 [gr-qc/0507003] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    D.D.K. Chow, C.N. Pope and E. Sezgin, Classification of solutions in topologically massive gravity, Class. Quant. Grav. 27 (2010) 105001 [arXiv:0906.3559] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    D. Anninos, G. Compere, S. de Buyl, S. Detournay and M. Guica, The curious case of null warped space, JHEP 11 (2010) 119 [arXiv:1005.4072] [SPIRES].ADSCrossRefGoogle Scholar
  45. [45]
    K. Skenderis and M. Taylor, Kaluza-Klein holography, JHEP 05 (2006) 057 [hep-th/0603016] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    K. Skenderis and M. Taylor, Holographic coulomb branch vevs, JHEP 08 (2006) 001 [hep-th/0604169] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    G. Arutyunov and S. Frolov, Some cubic couplings in type IIB supergravity on AdS 5 × S 5 and three-point functions in SYM(4) at large-N, Phys. Rev. D 61 (2000) 064009 [hep-th/9907085] [SPIRES].MathSciNetADSGoogle Scholar
  48. [48]
    S. Deser and X. Xiang, Canonical formulations of full nonlinear topologically massive gravity, Phys. Lett. B 263 (1991) 39 [SPIRES].MathSciNetADSGoogle Scholar
  49. [49]
    I.L. Buchbinder, S.L. Lyahovich and V.A. Krychtin, Canonical quantization of topologically massive gravity, Class. Quant. Grav. 10 (1993) 2083 [SPIRES].ADSzbMATHCrossRefGoogle Scholar
  50. [50]
    K. Hotta, Y. Hyakutake, T. Kubota and H. Tanida, Brown-Henneaux’s canonical approach to topologically massive gravity, JHEP 07 (2008) 066 [arXiv:0805.2005] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    M. Blau, J. Hartong and B. Rollier, Geometry of Schrödinger space-times II: particle and field probes of the causal structure, JHEP 07 (2010) 069 [arXiv:1005.0760] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality, Phys. Rev. Lett. 101 (2008) 081601 [arXiv:0805.0150] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality: prescription, renormalization and examples, JHEP 05 (2009) 085 [arXiv:0812.2909] [SPIRES].ADSCrossRefGoogle Scholar
  54. [54]
    R.G. Leigh and N.N. Hoang, Real-time correlators and non-relativistic holography, JHEP 11 (2009) 010 [arXiv:0904.4270] [SPIRES].ADSCrossRefGoogle Scholar
  55. [55]
    C.A. Fuertes and S. Moroz, Correlation functions in the non-relativistic AdS/CFT correspondence, Phys. Rev. D 79 (2009) 106004 [arXiv:0903.1844] [SPIRES].ADSGoogle Scholar
  56. [56]
    A. Volovich and C. Wen, Correlation functions in non-relativistic holography, JHEP 05 (2009) 087 [arXiv:0903.2455] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    B. Chen and Z.-b. Xu, Quasi-normal modes of warped black holes and warped AdS/CFT correspondence, JHEP 11 (2009) 091 [arXiv:0908.0057] [SPIRES].ADSCrossRefGoogle Scholar
  58. [58]
    B. Chen, B. Ning and Z.-b. Xu, Real-time correlators in warped AdS/CFT correspondence, JHEP 02 (2010) 031 [arXiv:0911.0167] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  59. [59]
    D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Correlation functions in the CFT(d)/AdS(d + 1) correspondence, Nucl. Phys. B 546 (1999) 96 [hep-th/9804058] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  60. [60]
    I. Papadimitriou and K. Skenderis, Thermodynamics of asymptotically locally AdS spacetimes, JHEP 08 (2005) 004 [hep-th/0505190] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  61. [61]
    I. Papadimitriou, Holographic renormalization as a canonical transformation, arXiv:1007.4592 [SPIRES].

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Monica Guica
    • 1
  • Kostas Skenderis
    • 2
    • 3
  • Marika Taylor
    • 2
  • Balt C. van Rees
    • 2
  1. 1.Laboratoire de Physique Théorique et Hautes Energies (LPTHE), CNRS, UPMCParis Cedex 05France
  2. 2.Institute for Theoretical PhysicsAmsterdamThe Netherlands
  3. 3.Korteweg-de Vries Institute for MathematicsAmsterdamThe Netherlands

Personalised recommendations