Advertisement

Journal of High Energy Physics

, 2011:52 | Cite as

Boundary conditions in Toda theories and minimal models

  • Stefan FredenhagenEmail author
Article

Abstract

We show that the disc bulk one-point functions in a sl(n) Toda conformal field theory have a well-defined limit for the central charge c = n − 1, and that their limiting values can be obtained from a limit of bulk one-point functions in the W n minimal models. This comparison leads to a proposal for one-point functions for twisted boundary conditions in Toda theory.

Keywords

Field Theories in Lower Dimensions D-branes Conformal and W Symmetry Conformal Field Models in String Theory 

References

  1. [1]
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    J. Fuchs, I. Runkel and C. Schweigert, Twenty-five years of two-dimensional rational conformal field theory, J. Math. Phys. 51 (2010) 015210 [arXiv:0910.3145] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    I. Runkel and G.M.T. Watts, A non-rational CFT with c =1 as a limit of minimal models, JHEP 09 (2001) 006 [hep-th/0107118] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    V. Schomerus, Rolling tachyons from Liouville theory, JHEP 11 (2003) 043 [hep-th/0306026] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    S. Fredenhagen and V. Schomerus, Boundary Liouville theory at c = 1, JHEP 05 (2005) 025 [hep-th/0409256] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    S. Fredenhagen and D. Wellig, A common limit of super Liouville theory and minimal models, JHEP 09 (2007) 098 [arXiv:0706.1650] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    D. Roggenkamp and K. Wendland, Limits and degenerations of unitary conformal field theories, Commun. Math. Phys. 251 (2004) 589 [hep-th/0308143] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. [8]
    H. Dorn and H.J. Otto, Two and three point functions in Liouville theory, Nucl. Phys. B 429 (1994) 375 [hep-th/9403141] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    A.B. Zamolodchikov and A.B. Zamolodchikov, Structure constants and conformal bootstrap in Liouville field theory, Nucl. Phys. B 477 (1996) 577 [hep-th/9506136] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    V. Fateev, A.B. Zamolodchikov and A.B. Zamolodchikov, Boundary Liouville field theory. I: Boundary state and boundary two-point function, hep-th/0001012 [SPIRES].
  11. [11]
    J. Teschner, Remarks on Liouville theory with boundary, hep-th/0009138 [SPIRES].
  12. [12]
    A.B. Zamolodchikov and A.B. Zamolodchikov, Liouville field theory on a pseudosphere, hep-th/0101152 [SPIRES].
  13. [13]
    K. Hosomichi, Bulk-boundary propagator in Liouville theory on a disc, JHEP 11 (2001) 044 [hep-th/0108093] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    B. Ponsot and J. Teschner, Boundary Liouville field theory: Boundary three point function, Nucl. Phys. B 622 (2002) 309 [hep-th/0110244] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    B. Ponsot, Liouville theory on the pseudosphere: Bulk-boundary structure constant, Phys. Lett. B 588 (2004) 105 [hep-th/0309211] [SPIRES].MathSciNetADSGoogle Scholar
  16. [16]
    A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    M. Henneaux and S.-J. Rey, Nonlinear W(infinity) Algebra as Asymptotic Symmetry of Three-Dimensional Higher Spin Anti-de Sitter Gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    M.R. Gaberdiel and R. Gopakumar, An AdS 3 Dual for Minimal Model CFTs, arXiv:1011.2986 [SPIRES].
  19. [19]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. [20]
    N. Wyllard, A N−1 conformal Toda field theory correlation functions from conformal N =2 SU(N) quiver gauge theories, JHEP 11 (2009) 002 [arXiv:0907.2189] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    V.A. Fateev and A.V. Litvinov, Correlation functions in conformal Toda field theory I, JHEP 11 (2007) 002 [arXiv:0709.3806] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    V.A. Fateev and A.V. Litvinov, Correlation functions in conformal Toda field theory II, JHEP 01 (2009) 033 [arXiv:0810.3020] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    N. Drukker, D. Gaiotto and J. Gomis, The Virtue of Defects in 4D Gauge Theories and 2D CFTs, arXiv:1003.1112 [SPIRES].
  24. [24]
    V. Fateev and S. Ribault, Conformal Toda theory with a boundary, JHEP 12 (2010) 089 [arXiv:1007.1293] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    J.L. Cardy, Boundary Conditions, Fusion Rules and the Verlinde Formula, Nucl. Phys. B 324 (1989) 581 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    V.A. Fateev, Normalization factors, reflection amplitudes and integrable systems, hep-th/0103014 [SPIRES].
  27. [27]
    F.A. Bais, P. Bouwknegt, M. Surridge and K. Schoutens, Coset Construction for Extended Virasoro Algebras, Nucl. Phys. B 304 (1988) 371 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    P. Goddard, A. Kent and D.I. Olive, Unitary Representations of the Virasoro and Supervirasoro Algebras, Commun. Math. Phys. 103 (1986) 105 [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  29. [29]
    P.D. Francesco, P. Mathieu and D. Sénéchal, Conformal Field Theory, Graduate Texts in Contemporary Physics, Springer, New York (1999).Google Scholar
  30. [30]
    L. Birke, J. Fuchs and C. Schweigert, Symmetry breaking boundary conditions and WZW orbifolds, Adv. Theor. Math. Phys. 3 (1999) 671 [hep-th/9905038] [SPIRES].MathSciNetzbMATHGoogle Scholar
  31. [31]
    H. Ishikawa, Boundary states in coset conformal field theories, Nucl. Phys. B 629 (2002) 209 [hep-th/0111230] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    S. Fredenhagen, Organizing boundary RG flows, Nucl. Phys. B 660 (2003) 436 [hep-th/0301229] [SPIRES].MathSciNetADSGoogle Scholar
  33. [33]
    A.F. Caldeira and J.F. Wheater, Boundary states and broken bulk symmetries in W A(r) minimal models, hep-th/0404052 [SPIRES].
  34. [34]
    V.A. Fateev and S.L. Lukyanov, The Models of Two-Dimensional Conformal Quantum Field Theory with Z(n) Symmetry, Int. J. Mod. Phys. A3 (1988) 507 [SPIRES].MathSciNetADSGoogle Scholar
  35. [35]
    S. Fredenhagen and V. Schomerus, D-branes in coset models, JHEP 02 (2002) 005 [hep-th/0111189] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    A. Recknagel, D. Roggenkamp and V. Schomerus, On relevant boundary perturbations of unitary minimal models, Nucl. Phys. B 588 (2000) 552 [hep-th/0003110] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    K. Graham, I. Runkel and G.M.T. Watts, Minimal model boundary flows and c =1 CFT, Nucl. Phys. B 608 (2001) 527 [hep-th/0101187] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    A.Y. Alekseev, S. Fredenhagen, T. Quella and V. Schomerus, Non-commutative gauge theory of twisted D-branes, Nucl. Phys. B 646 (2002) 127 [hep-th/0205123] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    M.R. Gaberdiel and T. Gannon, The charges of a twisted brane, JHEP 01 (2004) 018 [hep-th/0311242] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    S. Fredenhagen, D-brane dynamics in curved backgrounds, Ph.D. thesis, Humboldt University, Berlin (2002), http://edoc.hu-berlin.de/docviews/abstract.php?id=10498.
  41. [41]
    Y. Tachikawa, N=2 S-duality via Outer-automorphism Twists, arXiv:1009.0339 [SPIRES].
  42. [42]
    S.L. Lukyanov and V.A. Fateev, Physics reviews: Additional symmetries and exactly soluble models in two-dimensional conformal field theory, Chur Switzerland, Harwood (1990).Google Scholar
  43. [43]
    E. Kiritsis and V. Niarchos, Large-N limits of 2d CFTs, Quivers and AdS 3 duals, arXiv:1011.5900 [SPIRES].
  44. [44]
    A.N. Schellekens and S. Yankielowicz, Extended Chiral Algebras and Modular Invariant Partition Functions, Nucl. Phys. B 327 (1989) 673 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    V.G. Kac, Infinite Dimensional Lie Algebras, Cambridge University Press, Cambridge U.K. (1990).zbMATHCrossRefGoogle Scholar
  46. [46]
    M.R. Gaberdiel and T. Gannon, Boundary states for WZW models, Nucl. Phys. B 639 (2002) 471 [hep-th/0202067] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    J. Fuchs, B. Schellekens and C. Schweigert, From Dynkin diagram symmetries to fixed point structures, Commun. Math. Phys. 180 (1996) 39 [hep-th/9506135] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  48. [48]
    V.G. Kac and M. Wakimoto, Modular and conformal invariance constraints in representation theory of affine algebras, Adv. Math. 70 (1988) 156 [SPIRES].MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Max-Planck-Institut für GravitationsphysikAlbert-Einstein-InstitutGolmGermany

Personalised recommendations