Advertisement

Journal of High Energy Physics

, 2011:48 | Cite as

Effective action in a higher-spin background

  • Xavier Bekaert
  • Euihun JoungEmail author
  • Jihad Mourad
Open Access
Article

Abstract

We consider a free massless scalar field coupled to an infinite tower of background higher-spin gauge fields via minimal coupling to the traceless conserved currents. The set of Abelian gauge transformations is deformed to the non-Abelian group of unitary operators acting on the scalar field. The gauge invariant effective action is computed perturbatively in the external fields. The structure of the various (divergent or finite) terms is determined. In particular, the quadratic part of the logarithmically divergent (or of the finite) term is expressed in terms of curvatures and related to conformal higher-spin gravity. The generalized higher-spin Weyl anomalies are also determined. The relation with the theory of interacting higher-spin gauge fields on anti de Sitter spacetime via the holographic correspondence is discussed.

Keywords

AdS-CFT Correspondence Conformal and W Symmetry Anomalies in Field and String Theories 

References

  1. [1]
    X. Bekaert, N. Boulanger and P. Sundell, How higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examples, arXiv:1007.0435 [SPIRES].
  2. [2]
    D.J. Gross, High-energy symmetries of string theory, Phys. Rev. Lett. 60 (1988) 1229 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    A. Sagnotti and M. Taronna, String lessons for higher-spin interactions, Nucl. Phys. B 842 (2011) 299 [arXiv:1006.5242] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    A. Fotopoulos and M. Tsulaia, On the tensionless limit of string theory, off-shell higher spin interaction vertices and BCFW recursion relations, JHEP 11 (2010) 086 [arXiv:1009.0727] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    M. Porrati, R. Rahman and A. Sagnotti, String theory and the Velo-Zwanziger problem, arXiv:1011.6411 [SPIRES].
  6. [6]
    M.A. Vasiliev, Higher spin gauge theories in any dimension, Comptes Rendus Physique 5 (2004) 1101 [hep-th/0409260] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    M.A. Vasiliev, Higher spin gauge theories in various dimensions, Fortsch. Phys. 52 (2004) 702 [hep-th/0401177] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. [8]
    X. Bekaert, S. Cnockaert, C. Iazeolla and M.A. Vasiliev, Nonlinear higher spin theories in various dimensions, hep-th/0503128 [SPIRES].
  9. [9]
    I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [SPIRES].MathSciNetADSGoogle Scholar
  10. [10]
    B. Sundborg, Stringy gravity, interacting tensionless strings and massless higher spins, Nucl. Phys. Proc. Suppl. 102 (2001) 113 [hep-th/0103247] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    E. Witten, Spacetime reconstruction, talk given at J.H. Schwarz 60th Birthday Conference, CalTech, November 2001.Google Scholar
  12. [12]
    A. Mikhailov, Notes on higher spin symmetries, hep-th/0201019 [SPIRES].
  13. [13]
    E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [hep-th/0205131] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    E.S. Fradkin, The problem of unification of all interactions and self-consistency, talk given at Dirac Medal for 1988, Trieste Italy, April 1989 [SPIRES].
  15. [15]
    H. Liu and A.A. Tseytlin, D = 4 super Yang-Mills, D = 5 gauged supergravity and D = 4 conformal supergravity, Nucl. Phys. B 533 (1998) 88 [hep-th/9804083] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    A.A. Tseytlin, On limits of superstring in AdS 5 × S 5, Theor. Math. Phys. 133 (2002) 1376 [hep-th/0201112] [SPIRES].MathSciNetCrossRefGoogle Scholar
  17. [17]
    E.S. Fradkin and A.A. Tseytlin, Conformal supergravity, Phys. Rept. 119 (1985) 233 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    A.Y. Segal, Conformal higher spin theory, Nucl. Phys. B 664 (2003) 59 [hep-th/0207212] [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    R.R. Metsaev, Gauge invariant two-point vertices of shadow fields, AdS/CFT and conformal fields, Phys. Rev. D 81 (2010) 106002 [arXiv:0907.4678] [SPIRES].MathSciNetADSGoogle Scholar
  20. [20]
    E.S. Fradkin and V.Y. Linetsky, A superconformal theory of massless higher spin fields in D = (2+1), Mod. Phys. Lett. A 4 (1989) 731 [SPIRES].MathSciNetADSGoogle Scholar
  21. [21]
    E.S. Fradkin and V.Y. Linetsky, Cubic interaction in conformal theory of integer higher spin fields in four-dimensional space-time, Phys. Lett. B 231 (1989) 97 [SPIRES].MathSciNetADSGoogle Scholar
  22. [22]
    E.S. Fradkin and V.Y. Linetsky, Conformal superalgebras of higher spins, Mod. Phys. Lett. A 4 (1989) 2363 [SPIRES].MathSciNetADSGoogle Scholar
  23. [23]
    E.S. Fradkin and V.Y. Linetsky, Superconformal higher spin theory in the cubic approximation, Nucl. Phys. B 350 (1991) 274 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    E.S. Fradkin and M.A. Vasiliev, Cubic interaction in extended theories of massless higher spin fields, Nucl. Phys. B 291 (1987) 141 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    E.S. Fradkin and M.A. Vasiliev, On the gravitational interaction of massless higher spin fields, Phys. Lett. B 189 (1987) 89 [SPIRES].ADSGoogle Scholar
  26. [26]
    M.A. Vasiliev, Cubic interactions of bosonic higher spin gauge fields in AdS 5, Nucl. Phys. B 616 (2001) 106 [hep-th/0106200] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    K.B. Alkalaev and M.A. Vasiliev, N = 1 supersymmetric theory of higher spin gauge fields in AdS 5 at the cubic level, Nucl. Phys. B 655 (2003) 57 [hep-th/0206068] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    K.B. Alkalaev, FV-type action for AdS 5 mixed-symmetry fields, arXiv:1011.6109 [SPIRES].
  29. [29]
    M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3+1)-dimensions, Phys. Lett. B 243 (1990) 378 [SPIRES].MathSciNetADSGoogle Scholar
  30. [30]
    M.A. Vasiliev, More on equations of motion for interacting massless fields of all spins in (3+1)-dimensions, Phys. Lett. B 285 (1992) 225 [SPIRES].MathSciNetADSGoogle Scholar
  31. [31]
    M.A. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dS d, Phys. Lett. B 567 (2003) 139 [hep-th/0304049] [SPIRES].MathSciNetADSGoogle Scholar
  32. [32]
    A.C. Petkou, Evaluating the AdS dual of the critical O(N) vector model, JHEP 03 (2003) 049 [hep-th/0302063] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    E. Sezgin and P. Sundell, Holography in 4D(super) higher spin theories and a test via cubic scalar couplings, JHEP 07 (2005) 044 [hep-th/0305040] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    S. Giombi and X. Yin, Higher spin gauge theory and holography: the three-point functions, JHEP 09 (2010) 115 [arXiv:0912.3462] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    S. Giombi and X. Yin, Higher spins in AdS and twistorial holography, arXiv:1004.3736 [SPIRES].
  36. [36]
    R.d.M. Koch, A. Jevicki, K. Jin and J.P. Rodrigues, AdS 4/CFT 3 construction from collective fields, Phys. Rev. D 83 (2011) 025006 [arXiv:1008.0633] [SPIRES].ADSGoogle Scholar
  37. [37]
    M.R. Douglas, L. Mazzucato and S.S. Razamat, Holographic dual of free field theory, arXiv:1011.4926 [SPIRES].
  38. [38]
    A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    M. Henneaux and S.-J. Rey, Nonlinear W algebra as asymptotic symmetry of three-dimensional higher spin anti-de Sitter gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  40. [40]
    M.R. Gaberdiel, R. Gopakumar and A. Saha, Quantum W-symmetry in AdS 3, arXiv:1009.6087 [SPIRES].
  41. [41]
    M.R. Gaberdiel and R. Gopakumar, An AdS 3 dual for minimal model CFTs, arXiv:1011.2986 [SPIRES].
  42. [42]
    A. Castro, A. Lepage-Jutier and A. Maloney, Higher spin theories in AdS 3 and a gravitational exclusion principle, arXiv:1012.0598 [SPIRES].
  43. [43]
    F.A. Berends, G.J.H. Burgers and H. van Dam, Explicit construction of conserved currents for massless fields of arbitrary spin, Nucl. Phys. B 271 (1986) 429 [SPIRES].ADSGoogle Scholar
  44. [44]
    D. Anselmi, Higher-spin current multiplets in operator-product expansions, Class.Quant. Grav. 17 (2000) 1383 [hep-th/9906167] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  45. [45]
    M.A. Vasiliev, Higher spin gauge theories: star-product and AdS space, hep-th/9910096 [SPIRES].
  46. [46]
    S.E. Konstein, M.A. Vasiliev and V.N. Zaikin, Conformal higher spin currents in any dimension and AdS/CFT correspondence, JHEP 12 (2000) 018 [hep-th/0010239] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    O.A. Gelfond, E.D. Skvortsov and M.A. Vasiliev, Higher spin conformal currents in Minkowski space, Theor. Math. Phys. 154 (2008) 294 [hep-th/0601106] [SPIRES].zbMATHCrossRefGoogle Scholar
  48. [48]
    C. Fronsdal, Massless fields with integer spin, Phys. Rev. D 18 (1978) 3624 [SPIRES].ADSGoogle Scholar
  49. [49]
    X. Bekaert, E. Joung and J. Mourad, On higher spin interactions with matter, JHEP 05 (2009) 126 [arXiv:0903.3338] [SPIRES].ADSCrossRefGoogle Scholar
  50. [50]
    R. Manvelyan and W. Ruhl, Conformal coupling of higher spin gauge fields to a scalar field in AdS 4 and generalized Weyl invariance, Phys. Lett. B 593 (2004) 253 [hep-th/0403241] [SPIRES].MathSciNetADSGoogle Scholar
  51. [51]
    R. Manvelyan and K. Mkrtchyan, Conformal invariant interaction of a scalar field with the higher spin field in AdS D, Mod. Phys. Lett. A 25 (2010) 1333 [arXiv:0903.0058] [SPIRES].MathSciNetADSGoogle Scholar
  52. [52]
    D. Anselmi, Theory of higher spin tensor currents and central charges, Nucl. Phys. B 541 (1999) 323 [hep-th/9808004] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    T. Leonhardt, R. Manvelyan and W. Rühl, Coupling of higher spin gauge fields to a scalar field in AdS d+1 and their holographic images in the d-dimensional σ-model, hep-th/0401240 [SPIRES].
  54. [54]
    M.G. Eastwood, Higher symmetries of the Laplacian, Annals Math. 161 (2005) 1645 [hep-th/0206233] [SPIRES].MathSciNetzbMATHCrossRefGoogle Scholar
  55. [55]
    X. Bekaert, Higher spin algebras as higher symmetries, Physics AUC 16 part II (2006) 58, [arXiv:0704.0898] [SPIRES].Google Scholar
  56. [56]
    R. Manvelyan and W. Rühl, The quantum one loop trace anomaly of the higher spin conformal conserved currents in the bulk of AdS 4, Nucl. Phys. B 733 (2006) 104 [hep-th/0506185] [SPIRES].ADSCrossRefGoogle Scholar
  57. [57]
    R. Manvelyan and W. Rühl, The structure of the trace anomaly of higher spin conformal currents in the bulk of AdS 4, Nucl. Phys. B 751 (2006) 285 [hep-th/0602067] [SPIRES].ADSCrossRefGoogle Scholar
  58. [58]
    R. Manvelyan and W. Rühl, Generalized curvature and Ricci tensors for a higher spin potential and the trace anomaly in external higher spin fields in AdS 4 space, Nucl. Phys. B 796 (2008) 457 [arXiv:0710.0952] [SPIRES].ADSGoogle Scholar
  59. [59]
    N.D. Birrell, P.C.W. Davies, Quantum fields in curved space, Cambridge University Press, Cambridge U.K. (1982) [SPIRES].zbMATHGoogle Scholar
  60. [60]
    A.M. Polyakov, Quantum geometry of bosonic strings, Phys. Lett. B 103 (1981) 207 [SPIRES].MathSciNetADSGoogle Scholar
  61. [61]
    A.D. Sakharov, Vacuum quantum fluctuations in curved space and the theory of gravitation, Sov. Phys. Dokl. 12 (1968) 1040 [Dokl. Akad. Nauk Ser. Fiz. 177 (1967) 70] [Sov. Phys. Usp. 34 (1991) 394] [Gen. Rel. Grav. 32 (2000) 365] [SPIRES].ADSGoogle Scholar
  62. [62]
    M. Visser, Sakharov’s induced gravity: a modern perspective, Mod. Phys. Lett. A 17 (2002) 977 [gr-qc/0204062] [SPIRES].MathSciNetADSGoogle Scholar
  63. [63]
    D. Francia and A. Sagnotti, Free geometric equations for higher spins, Phys. Lett. B 543 (2002) 303 [hep-th/0207002] [SPIRES].MathSciNetADSGoogle Scholar
  64. [64]
    D. Francia and A. Sagnotti, Minimal local Lagrangians for higher-spin geometry, Phys. Lett. B 624 (2005) 93 [hep-th/0507144] [SPIRES].MathSciNetADSGoogle Scholar
  65. [65]
    X. Bekaert and N. Boulanger, Tensor gauge fields in arbitrary representations of GL(D, R). II: Quadratic actions, Commun. Math. Phys. 271 (2007) 723 [hep-th/0606198] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  66. [66]
    D. Francia, J. Mourad and A. Sagnotti, Current exchanges and unconstrained higher spins, Nucl. Phys. B 773 (2007) 203 [hep-th/0701163] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  67. [67]
    A. Campoleoni, D. Francia, J. Mourad and A. Sagnotti, Unconstrained higher spins of mixed symmetry. I. Bose fields, Nucl. Phys. B 815 (2009) 289 [arXiv:0810.4350] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  68. [68]
    A. Campoleoni, D. Francia, J. Mourad and A. Sagnotti, Unconstrained higher spins of mixed symmetry. II. Fermi fields, Nucl. Phys. B 828 (2010) 405 [arXiv:0904.4447] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  69. [69]
    D. Francia, On the relation between local and geometric Lagrangians for higher spins, J. Phys. Conf. Ser. 222 (2010) 012002 [arXiv:1001.3854] [SPIRES].ADSCrossRefGoogle Scholar
  70. [70]
    D. Francia and A. Sagnotti, On the geometry of higher-spin gauge fields, Class. Quant. Grav. 20 (2003) S473 [hep-th/0212185] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  71. [71]
    A. Sagnotti and M. Tsulaia, On higher spins and the tensionless limit of string theory, Nucl. Phys. B 682 (2004) 83 [hep-th/0311257] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  72. [72]
    D. Francia and A. Sagnotti, Higher-spin geometry and string theory, J. Phys. Conf. Ser. 33 (2006) 57 [hep-th/0601199] [SPIRES].CrossRefADSGoogle Scholar
  73. [73]
    A. Fotopoulos, K.L. Panigrahi and M. Tsulaia, Lagrangian formulation of higher spin theories on AdS space, Phys. Rev. D 74 (2006) 085029 [hep-th/0607248] [SPIRES].MathSciNetADSGoogle Scholar
  74. [74]
    I.L. Buchbinder, A.V. Galajinsky and V.A. Krykhtin, Quartet unconstrained formulation for massless higher spin fields, Nucl. Phys. B 779 (2007) 155 [hep-th/0702161] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  75. [75]
    D. Francia, String theory triplets and higher-spin curvatures, Phys. Lett. B 690 (2010) 90 [arXiv:1001.5003] [SPIRES].ADSGoogle Scholar
  76. [76]
    C. Fronsdal, Singletons and massless, integral spin fields on de Sitter space (Elementary particles in a curved space. 7), Phys. Rev. D 20 (1979) 848 [SPIRES].MathSciNetADSGoogle Scholar
  77. [77]
    S. Weinberg, Photons and gravitons in s matrix theory: derivation of charge conservation and equality of gravitational and inertial mass, Phys. Rev. 135 (1964) B1049 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  78. [78]
    B. de Wit and D.Z. Freedman, Systematics of higher spin gauge fields, Phys. Rev. D 21 (1980) 358 [SPIRES].ADSGoogle Scholar
  79. [79]
    H. Weyl, Quantum mechanics and group theory, Z. Phys. 46 (1927) 1 [SPIRES].ADSCrossRefGoogle Scholar
  80. [80]
    E.P. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40 (1932) 749 [SPIRES].ADSzbMATHCrossRefGoogle Scholar
  81. [81]
    J.E. Moyal, Quantum mechanics as a statistical theory, Proc. Cambridge Phil. Soc. 45 (1949) 99 [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques et Physique Théorique,1Université François RabelaisParc de GrandmountToursFrance
  2. 2.Scuola Normale Superiore and INFNPisaItaly
  3. 3.AstroParticule et Cosmologie,2 Université Paris VIIParis Cedex 13France

Personalised recommendations