Journal of High Energy Physics

, Volume 2011, Issue 2, pp 1–31 | Cite as

Early (and later) LHC search strategies for broad dimuon resonances

  • Randall Kelley
  • Lisa Randall
  • Brian Shuve


Resonance searches generally focus on narrow states that would produce a sharp peak rising over background. Early LHC running will, however, be sensitive primarily to broad resonances. In this paper we demonstrate that statistical methods should suffice to find broad resonances and distinguish them from both background and contact interactions over a large range of previously unexplored parameter space. We furthermore introduce an angular measure we call ellipticity, which measures how forward (or backward) the muon is in η, and allows for discrimination between models with different parity violation early in the LHC running. We contrast this with existing angular observables and demonstrate that ellipticity is superior for discrimination based on parity violation, while others are better at spin determination.


Beyond Standard Model Phenomenological Models Hadronic Colliders Field Theories in Higher Dimensions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C.W. Bauer, Z. Ligeti, M. Schmaltz, J. Thaler and D.G.E. Walker, Supermodels for early LHC, Phys. Lett. B 690 (2010) 280 [arXiv:0909.5213] [SPIRES].ADSGoogle Scholar
  2. [2]
    R. Diener, S. Godfrey and T.A.W. Martin, Discovery and identification of extra neutral gauge bosons at the LHC, arXiv:0910.1334 [SPIRES].
  3. [3]
    E. Salvioni, G. Villadoro and F. Zwirner, Minimal Z′ models: present bounds and early LHC reach, JHEP 11 (2009) 068 [arXiv:0909.1320] [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    E. Salvioni, A. Strumia, G. Villadoro and F. Zwirner, Non-universal minimal Z′ models: present bounds and early LHC reach, JHEP 03 (2010) 010 [arXiv:0911.1450] [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    L. Basso, A. Belyaev, S. Moretti, G.M. Pruna and C.H. Shepherd-Themistocleous, Z′ discovery potential at the LHC in the minimal B − L extension of the standard model, arXiv:1002.3586 [SPIRES].
  6. [6]
    P. Langacker, The physics of heavy Z′ gauge bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [SPIRES].ADSCrossRefGoogle Scholar
  7. [7]
    S. Davidson, S. Forte, P. Gambino, N. Rius and A. Strumia, Old and new physics interpretations of the NuTeV anomaly, JHEP 02 (2002) 037 [hep-ph/0112302] [SPIRES].
  8. [8]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  9. [9]
    T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision tests, JHEP 08 (2003) 050 [hep-ph/0308036] [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Experimental probes of localized gravity: on and off the wall, Phys. Rev. D 63 (2001) 075004 [hep-ph/0006041] [SPIRES].ADSGoogle Scholar
  12. [12]
    E. Eichten et al., Supercollider physics, Rev. Mod. Phys. 56 (1984) 579. ADSCrossRefGoogle Scholar
  13. [13]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    ATLAS collaboration, Expected performance of the ATLAS experiment, detector, trigger and physics, arXiv:0901.0512 [SPIRES].
  15. [15]
    Q. Li, C.S. Li and L.L. Yang, Soft gluon resummation effects in single graviton production at the CERN Large Hadron Collider in the Randall-Sundrum model, Phys. Rev. D 74 (2006) 056002 [hep-ph/0606045] [SPIRES].ADSGoogle Scholar
  16. [16]
    CMS collaboration, Search for new high-mass resonances decaying to muon pairs in the CMS experiment, CMS-PAS-SBM-07-002.
  17. [17]
    ALEPH collaboration, J. Alcaraz et al., A combination of preliminary electroweak measurements and constraints on the standard model, hep-ex/0612034 [SPIRES].
  18. [18]
    D0 collaboration, M.P. Titov, Search for leptoquarks and compositeness at D0, PoS(HEP2005)314 [hep-ex/0512006] [SPIRES].
  19. [19]
    The D0 collaboration, V.M. Abazov et al., Search for Randall-Sundrum gravitons in the dielectron and diphoton final states with 5.4 fb −1 of data from \( p\bar{p} \) collisions at \( \sqrt {(} s) = 1.96\;TeV \), Phys. Rev. Lett. 104 (2010) 241802 [arXiv:1004.1826] [SPIRES].ADSCrossRefGoogle Scholar
  20. [20]
    CDF collaboration, T. Aaltonen et al., A search for high-mass resonances decaying to dimuons at CDF, Phys. Rev. Lett. 102 (2009) 091805 [arXiv:0811.0053] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    C.S. Kim, J.D. Kim and J.-H. Song, Muon anomalous magnetic moment (g − 2)(μ) and the Randall-Sundrum model, Phys. Lett. B 511 (2001) 251 [hep-ph/0103127] [SPIRES].ADSGoogle Scholar
  22. [22]
    S.C. Park and H.S. Song, Muon anomalous magnetic moment and the stabilized Randall-Sundrum scenario, Phys. Lett. B 506 (2001) 99 [hep-ph/0103072] [SPIRES].ADSGoogle Scholar
  23. [23]
    Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].ADSGoogle Scholar
  24. [24]
    S. Baker and R.D. Cousins, Clarification of the use of χ 2 and likelihood functions in fits to histograms, Nucl. Instrum. Meth. 221 (1984) 437 [SPIRES].CrossRefGoogle Scholar
  25. [25]
    J.G. Heinrich, The log likelihood ratio of the Poisson distribution for small μ, CDF Note 5718 (2001).Google Scholar
  26. [26]
    O. Kortner, Muon identification at ATLAS and CMS, arXiv:0707.0905 [SPIRES].
  27. [27]
    R. Cahn, personal correspondence.Google Scholar
  28. [28]
    M. Dittmar, Neutral current interference in the TeV region: the experimental sensitivity at the LHC, Phys. Rev. D 55 (1997) 161 [hep-ex/9606002] [SPIRES].ADSGoogle Scholar
  29. [29]
    P. Osland, A.A. Pankov, N. Paver and A.V. Tsytrinov, Spin identification of the Randall-Sundrum resonance in lepton-pair production at the LHC, Phys. Rev. D 78 (2008) 035008 [arXiv:0805.2734] [SPIRES].ADSGoogle Scholar
  30. [30]
    R. Diener, S. Godfrey and T.A.W. Martin, Using final state pseudorapidities to improve s-channel resonance observables at the LHC, Phys. Rev. D 80 (2009) 075014 [arXiv:0909.2022] [SPIRES].ADSGoogle Scholar
  31. [31]
    F. del Aguila, M. Cvetič and P. Langacker, Determination of Z′ gauge couplings to quarks and leptons at future hadron colliders, Phys. Rev. D 48 (1993) 969 [hep-ph/9303299] [SPIRES].ADSGoogle Scholar
  32. [32]
    T.G. Rizzo, Z′ phenomenology and the LHC, hep-ph/0610104 [SPIRES].
  33. [33]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].ADSCrossRefGoogle Scholar
  34. [34]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [SPIRES].ADSMATHCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Department of PhysicsHarvard UniversityCambridgeU.S.A.

Personalised recommendations