Journal of High Energy Physics

, Volume 2011, Issue 2, pp 1–15 | Cite as

A (0,2) mirror map



We study the linear sigma model subspace of the moduli space of (0,2) super-conformal world-sheet theories obtained by deforming (2,2) theories based on Calabi-Yau hypersurfaces in reflexively plain toric varieties. We describe a set of algebraic coordinates on this subspace, formulate a (0,2) generalization of the monomial-divisor mirror map, and show that the map exchanges principal components of singular loci of the mirror half-twisted theories. In non-reflexively plain examples the proposed map yields a mirror isomorphism between subfamilies of linear sigma models.


Superstrings and Heterotic Strings Differential and Algebraic Geometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P.S. Aspinwall, B.R. Greene and D.R. Morrison, The monomial divisor mirror map, alg-geom/9309007 [SPIRES].
  2. [2]
    V.V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Alg. Geom. 3 (1994) 493 [alg-geom/9310003] [SPIRES].MathSciNetMATHGoogle Scholar
  3. [3]
    E. Witten, Phases of N = 2 theories in two dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    D.R. Morrison and M. Ronen Plesser, Summing the instantons: quantum cohomology and mirror symmetry in toric varieties, Nucl. Phys. B 440 (1995) 279 [hep-th/9412236] [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    D.R. Morrison and M.R. Plesser, Towards mirror symmetry as duality for two dimensional abelian gauge theories, Nucl. Phys. Proc. Suppl. 46 (1996) 177 [hep-th/9508107] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  6. [6]
    M. Kreuzer, J. McOrist, I.V. Melnikov and M.R. Plesser, (0,2) deformations of linear σ-models, arXiv:1001.2104 [SPIRES].
  7. [7]
    V.V. Batyrev and E.N. Materov, Toric residues and mirror symmetry, Mosc. Math. J. 2 (2002) 435 [math.AG/0203216] [SPIRES].MathSciNetMATHGoogle Scholar
  8. [8]
    A. Szenes and M. Vergne, Toric reduction and a conjecture of Batyrev and Materov, Invent. Math. 158 (2004) 453.MathSciNetADSMATHCrossRefGoogle Scholar
  9. [9]
    L.A. Borisov, Higher Stanley-Reisner rings and toric residues, Compos. Math. 141 (2005) 161.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    K. Karu, Toric residue mirror conjecture for Calabi-Yau complete intersections, J. Algebraic Geom. 14 (2005) 741 [math.AG/0311338].MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    J. McOrist and I.V. Melnikov, Summing the instantons in half-twisted linear σ-models, JHEP 02 (2009) 026 [arXiv:0810.0012] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    E. Silverstein and E. Witten, Criteria for conformal invariance of (0,2) models, Nucl. Phys. B 444 (1995) 161 [hep-th/9503212] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    A. Basu and S. Sethi, World-sheet stability of (0,2) linear σ-models, Phys. Rev. D 68 (2003) 025003 [hep-th/0303066] [SPIRES].MathSciNetADSGoogle Scholar
  14. [14]
    C. Beasley and E. Witten, Residues and world-sheet instantons, JHEP 10 (2003) 065 [hep-th/0304115] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    J. Distler, Notes on (0,2) superconformal field theories, hep-th/9502012 [SPIRES].
  16. [16]
    D.A. Cox, The homogeneous coordinate ring of a toric variety, J. Algebraic Geom. 4 (1995) 17 [alg-geom/9210008] [SPIRES].
  17. [17]
    D.A. Cox and S. Katz, Mirror symmetry and algebraic geometry, American Mathematical Society, Providence U.S.A. (2000) [SPIRES].Google Scholar
  18. [18]
    J. Harris, Algebraic geometry: a first course, Springer, New York U.S.A. (1992).MATHGoogle Scholar
  19. [19]
    J. McOrist and I.V. Melnikov, Half-twisted correlators from the Coulomb branch, JHEP 04 (2008) 071 [arXiv:0712.3272] [SPIRES].MathSciNetCrossRefGoogle Scholar
  20. [20]
    M.M. Kapranov, A characterization of A-discriminantal hypersurfaces in terms of the logarithmic Gauss map, Math. Ann. 290 (1991) 277.MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    A. Adams, A. Basu and S. Sethi, (0,2) duality, Adv. Theor. Math. Phys. 7 (2004) 865 [hep-th/0309226] [SPIRES].MathSciNetGoogle Scholar
  22. [22]
    A. Adams, J. Distler and M. Ernebjerg, Topological heterotic rings, Adv. Theor. Math. Phys. 10 (2006) 657 [hep-th/0506263] [SPIRES].MathSciNetMATHGoogle Scholar
  23. [23]
    J. Distler and S. Kachru, (0,2) Landau-Ginzburg theory, Nucl. Phys. B 413 (1994) 213 [hep-th/9309110] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    J. Distler and S. Kachru, Duality of (0,2) string vacua, Nucl. Phys. B 442 (1995) 64 [hep-th/9501111] [SPIRES].MathSciNetADSGoogle Scholar
  25. [25]
    R. Blumenhagen, R. Schimmrigk and A. Wisskirchen, (0,2) mirror symmetry, Nucl. Phys. B 486 (1997) 598 [hep-th/9609167] [SPIRES].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)GolmGermany
  2. 2.Center for Geometry and Theoretical PhysicsDuke UniversityDurhamU.S.A.

Personalised recommendations