Advertisement

Journal of High Energy Physics

, 2010:93 | Cite as

String theory as a diffusing system

  • Gianluca Calcagni
  • Giuseppe Nardelli
Open Access
Article

Abstract

Recent results on the effective non-local dynamics of the tachyon mode of open string field theory (OSFT) show that approximate solutions can be constructed which obey the diffusion equation. We argue that this structure is inherited from the full theory, where it admits a universal formulation. In fact, all known exact OSFT solutions are superpositions of diffusing surface states. In particular, the diffusion equation is a spacetime manifestation of OSFT gauge symmetries.

Keywords

Tachyon Condensation String Field Theory 

References

  1. [1]
    E. Witten, Noncommutative Geometry and String Field Theory, Nucl. Phys. B 268 (1986) 253 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    V.A. Kostelecký and S. Samuel, The Static Tachyon Potential in the Open Bosonic String Theory, Phys. Lett. B 207 (1988) 169 [SPIRES].ADSGoogle Scholar
  3. [3]
    V.A. Kostelecký and S. Samuel, On a Nonperturbative Vacuum for the Open Bosonic String, Nucl. Phys. B 336 (1990) 263 [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    K. Ohmori, A review on tachyon condensation in open string field theories, hep-th/0102085 [SPIRES].
  5. [5]
    A. Sen, Tachyon dynamics in open string theory, Int. J. Mod. Phys. A 20 (2005) 5513 [hep-th/0410103] [SPIRES].ADSGoogle Scholar
  6. [6]
    E. Fuchs and M. Kroyter, Analytical Solutions of Open String Field Theory, arXiv:0807.4722 [SPIRES].
  7. [7]
    E. Witten, On background independent open string field theory, Phys. Rev. D 46 (1992) 5467 [hep-th/9208027] [SPIRES].MathSciNetADSGoogle Scholar
  8. [8]
    E. Witten, Some computations in background independent off-shell string theory, Phys. Rev. D 47 (1993) 3405 [hep-th/9210065] [SPIRES].MathSciNetADSGoogle Scholar
  9. [9]
    S.L. Shatashvili, Comment on the background independent open string theory, Phys. Lett. B 311 (1993) 83 [hep-th/9303143] [SPIRES].MathSciNetADSGoogle Scholar
  10. [10]
    S.L. Shatashvili, On the problems with background independence in string theory, Alg. Anal. 6 (1994) 215 [hep-th/9311177] [SPIRES].MathSciNetGoogle Scholar
  11. [11]
    D.A. Eliezer and R.P. Woodard, The Problem of Nonlocality in String Theory, Nucl. Phys. B 325 (1989) 389 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    N. Moeller and B. Zwiebach, Dynamics with infinitely many time derivatives and rolling tachyons, JHEP 10 (2002) 034 [hep-th/0207107] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    G. Calcagni and G. Nardelli, Tachyon solutions in boundary and cubic string field theory, Phys. Rev. D 78 (2008) 126010 [arXiv:0708.0366] [SPIRES].MathSciNetADSGoogle Scholar
  14. [14]
    G. Calcagni, M. Montobbio and G. Nardelli, Route to nonlocal cosmology, Phys. Rev. D 76 (2007) 126001 [arXiv:0705.3043] [SPIRES].MathSciNetADSGoogle Scholar
  15. [15]
    G. Calcagni, M. Montobbio and G. Nardelli, Localization of nonlocal theories, Phys. Lett. B 662 (2008) 285 [arXiv:0712.2237] [SPIRES].MathSciNetADSGoogle Scholar
  16. [16]
    G. Calcagni and G. Nardelli, Nonlocal instantons and solitons in string models, Phys. Lett. B 669 (2008) 102 [arXiv:0802.4395] [SPIRES].MathSciNetADSGoogle Scholar
  17. [17]
    G. Calcagni and G. Nardelli, Kinks of open superstring field theory, Nucl. Phys. B 823 (2009) 234 [arXiv:0904.3744] [SPIRES].MathSciNetCrossRefGoogle Scholar
  18. [18]
    G. Calcagni and G. Nardelli, Cosmological rolling solutions of nonlocal theories, Int. J. Mod. Phys. D (2010) in press arXiv:0904.4245 [SPIRES].
  19. [19]
    E. Witten, Interacting Field Theory of Open Superstrings, Nucl. Phys. B 276 (1986) 291 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    M.B. Green and N. Seiberg, Contact interactions in superstring theory, Nucl. Phys. B 299 (1988) 559 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    J. Greensite and F.R. Klinkhamer, Superstring amplitudes and contact interactions, Nucl. Phys. B 304 (1988) 108 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    I.Y. Aref’eva and P.B. Medvedev, Anomalies in Witten’s field theory of the NSR string, Phys. Lett. B 212 (1988) 299 [SPIRES].MathSciNetADSGoogle Scholar
  23. [23]
    C. Wendt, Scattering amplitudes and contact interactions in Witten’s superstring field theory, Nucl. Phys. B 314 (1989) 209 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    P.-J. De Smet and J. Raeymaekers, The tachyon potential in Witten’s superstring field theory, JHEP 08 (2000) 020 [hep-th/0004112] [SPIRES].CrossRefGoogle Scholar
  25. [25]
    C.R. Preitschopf, C.B. Thorn and S.A. Yost, Superstring field theory, Nucl. Phys. B 337 (1990) 363 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    I.Y. Aref’eva, P.B. Medvedev and A.P. Zubarev, Background formalism for superstring field theory, Phys. Lett. B 240 (1990) 356 [SPIRES].MathSciNetADSGoogle Scholar
  27. [27]
    I.Y. Aref’eva, P.B. Medvedev and A.P. Zubarev, New representation for string field solves the consistency problem for open superstring field theory, Nucl. Phys. B 341 (1990) 464 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    A. Sen, Non-BPS states and branes in string theory, hep-th/9904207 [SPIRES].
  29. [29]
    Z.-a. Qiu and A. Strominger, Gauge symmetries in (super)string field theory, Phys. Rev. D 36 (1987) 1794 [SPIRES].MathSciNetADSGoogle Scholar
  30. [30]
    Y. Okawa, L. Rastelli and B. Zwiebach, Analytic solutions for tachyon condensation with general projectors, hep-th/0611110 [SPIRES].
  31. [31]
    I. Ellwood, Singular gauge transformations in string field theory, JHEP 05 (2009) 037 [arXiv:0903.0390] [SPIRES].ADSCrossRefGoogle Scholar
  32. [32]
    A. Sen, Universality of the tachyon potential, JHEP 12 (1999) 027 [hep-th/9911116] [SPIRES].ADSCrossRefGoogle Scholar
  33. [33]
    L. Rastelli and B. Zwiebach, Tachyon potentials, star products and universality, JHEP 09 (2001) 038 [hep-th/0006240] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    D. Gaiotto, L. Rastelli, A. Sen and B. Zwiebach, Star algebra projectors, JHEP 04 (2002) 060 [hep-th/0202151] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    A. LeClair, M.E. Peskin and C.R. Preitschopf, String Field Theory on the Conformal Plane. 1. Kinematical Principles, Nucl. Phys. B 317 (1989) 411 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    A. LeClair, M.E. Peskin and C.R. Preitschopf, String Field Theory on the Conformal Plane. 2. Generalized Gluing, Nucl. Phys. B 317 (1989) 464 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    M. Schnabl, Analytic solution for tachyon condensation in open string field theory, Adv. Theor. Math. Phys. 10 (2006) 433 [hep-th/0511286] [SPIRES].MATHMathSciNetGoogle Scholar
  38. [38]
    Y. Okawa, Comments on Schnabl’s analytic solution for tachyon condensation in Witten’s open string field theory, JHEP 04 (2006) 055 [hep-th/0603159] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    E. Fuchs and M. Kroyter, On the validity of the solution of string field theory, JHEP 05 (2006) 006 [hep-th/0603195] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    L. Rastelli and B. Zwiebach, Solving open string field theory with special projectors, JHEP 01 (2008) 020 [hep-th/0606131] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    I. Ellwood and M. Schnabl, Proof of vanishing cohomology at the tachyon vacuum, JHEP 02 (2007) 096 [hep-th/0606142] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    I. Kishimoto and T. Takahashi, Vacuum structure around identity based solutions, Prog. Theor. Phys. 122 (2009) 385 [arXiv:0904.1095] [SPIRES].ADSCrossRefGoogle Scholar
  43. [43]
    E. Fuchs and M. Kroyter, Marginal deformation for the photon in superstring field theory, JHEP 11 (2007) 005 [arXiv:0706.0717] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    T. Erler, Tachyon Vacuum in Cubic Superstring Field Theory, JHEP 01 (2008) 013 [arXiv:0707.4591] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    I.Y. Aref’eva, R.V. Gorbachev and P.B. Medvedev, Tachyon Solution in Cubic Neveu-Schwarz String Field Theory, Theor. Math. Phys. 158 (2009) 320 [arXiv:0804.2017] [SPIRES].MathSciNetCrossRefGoogle Scholar
  46. [46]
    I.Y. Aref’eva et al., Pure Gauge Configurations and Tachyon Solutions to String Field Theories Equations of Motion, JHEP 05 (2009) 050 [arXiv:0901.4533] [SPIRES].ADSCrossRefGoogle Scholar
  47. [47]
    I.Y. Aref’eva, R.V. Gorbachev and P.B. Medvedev, Pure Gauge Configurations and Solutions to Fermionic Superstring Field Theories Equations of Motion, J. Phys. A 42 (2009) 304001 [arXiv:0903.1273] [SPIRES].MathSciNetGoogle Scholar
  48. [48]
    A. Sen, On the background independence of string field theory, Nucl. Phys. B 345 (1990) 551 [SPIRES].ADSCrossRefGoogle Scholar
  49. [49]
    A. Sen and B. Zwiebach, A Proof of local background independence of classical closed string field theory, Nucl. Phys. B 414 (1994) 649 [hep-th/9307088] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    V.A. Kostelecký and R. Potting, Analytical construction of a nonperturbative vacuum for the open bosonic string, Phys. Rev. D 63 (2001) 046007 [hep-th/0008252] [SPIRES].ADSGoogle Scholar
  51. [51]
    L. Rastelli, A. Sen and B. Zwiebach, Classical solutions in string field theory around the tachyon vacuum, Adv. Theor. Math. Phys. 5 (2002) 393 [hep-th/0102112] [SPIRES].MathSciNetGoogle Scholar
  52. [52]
    L. Rastelli, A. Sen and B. Zwiebach, Half strings, projectors and multiple D-branes in vacuum string field theory, JHEP 11 (2001) 035 [hep-th/0105058] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    D.J. Gross and W. Taylor, Split string field theory. I, JHEP 08 (2001) 009 [hep-th/0105059] [SPIRES].
  54. [54]
    L. Rastelli, A. Sen and B. Zwiebach, Boundary CFT construction of D-branes in vacuum string field theory, JHEP 11 (2001) 045 [hep-th/0105168] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    Y. Matsuo, BCFT and sliver state, Phys. Lett. B 513 (2001) 195 [hep-th/0105175] [SPIRES].MathSciNetADSGoogle Scholar
  56. [56]
    D.J. Gross and W. Taylor, Split string field theory. II, JHEP 08 (2001) 010 [hep-th/0106036] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    K. Furuuchi and K. Okuyama, Comma vertex and string field algebra, JHEP 09 (2001) 035 [hep-th/0107101] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    H. Hata and T. Kawano, Open string states around a classical solution in vacuum string field theory, JHEP 11 (2001) 038 [hep-th/0108150] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  59. [59]
    P. Mukhopadhyay, Oscillator representation of the BCFT construction of D- branes in vacuum string field theory, JHEP 12 (2001) 025 [hep-th/0110136] [SPIRES].ADSCrossRefGoogle Scholar
  60. [60]
    N. Moeller, Some exact results on the matter star-product in the half- string formalism, JHEP 01 (2002) 019 [hep-th/0110204] [SPIRES].ADSCrossRefGoogle Scholar
  61. [61]
    G.W. Moore and W. Taylor, The singular geometry of the sliver, JHEP 01 (2002) 004 [hep-th/0111069] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  62. [62]
    I.Y. Aref’eva, A.A. Giryavets and P.B. Medvedev, NS matter sliver, Phys. Lett. B 532 (2002) 291 [hep-th/0112214] [SPIRES].ADSGoogle Scholar
  63. [63]
    M. Mariño and R. Schiappa, Towards vacuum superstring field theory: The supersliver, J. Math. Phys. 44 (2003) 156 [hep-th/0112231] [SPIRES].MATHMathSciNetADSCrossRefGoogle Scholar
  64. [64]
    M. Schnabl, Wedge states in string field theory, JHEP 01 (2003) 004 [hep-th/0201095] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  65. [65]
    Y. Okawa, Open string states and D-brane tension from vacuum string field theory, JHEP 07 (2002) 003 [hep-th/0204012] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  66. [66]
    K. Ohmori, Comments on solutions of vacuum superstring field theory, JHEP 04 (2002) 059 [hep-th/0204138] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  67. [67]
    C. Maccaferri and D. Mamone, Star democracy in open string field theory, JHEP 09 (2003) 049 [hep-th/0306252] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  68. [68]
    L. Bonora, C. Maccaferri, R.J. Scherer Santos and D.D. Tolla, Ghost story. I. Wedge states in the oscillator formalism, JHEP 09 (2007) 061 [arXiv:0706.1025] [SPIRES].ADSCrossRefGoogle Scholar
  69. [69]
    L. Bonora, C. Maccaferri, R.J. Scherer Santos and D.D. Tolla, Ghost story. II. The midpoint ghost vertex, JHEP 11 (2009) 075 [arXiv:0908.0055] [SPIRES].CrossRefGoogle Scholar
  70. [70]
    L. Bonora, C. Maccaferri and D.D. Tolla, Ghost story. III. Back to ghost number zero, JHEP 11 (2009) 086 [arXiv:0908.0056] [SPIRES].CrossRefGoogle Scholar
  71. [71]
    E. Fuchs and M. Kroyter, Universal regularization for string field theory, JHEP 02 (2007) 038 [hep-th/0610298] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  72. [72]
    D.J. Gross and A. Jevicki, Operator Formulation of Interacting String Field Theory,Nucl. Phys. B 283 (1987) 1 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  73. [73]
    D.J. Gross and A. Jevicki, Operator Formulation of Interacting String Field Theory. 2, Nucl. Phys. B 287 (1987) 225 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  74. [74]
    J. Klusoň, Exact solutions of open bosonic string field theory, JHEP 04 (2002) 043 [hep-th/0202045] [SPIRES].ADSCrossRefGoogle Scholar
  75. [75]
    T. Takahashi and S. Tanimoto, Marginal and scalar solutions in cubic open string field theory, JHEP 03 (2002) 033 [hep-th/0202133] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  76. [76]
    N. Drukker, On different actions for the vacuum of bosonic string field theory, JHEP 08 (2003) 017 [hep-th/0301079] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  77. [77]
    M. Schnabl, Anomalous reparametrizations and butterfly states in string field theory, Nucl. Phys. B 649 (2003) 101 [hep-th/0202139] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  78. [78]
    H.-T. Yang, Solving Witten’s SFT by insertion of operators on projectors, JHEP 09 (2004) 002 [hep-th/0406023] [SPIRES].ADSCrossRefGoogle Scholar
  79. [79]
    L. Rastelli, A. Sen and B. Zwiebach, String field theory around the tachyon vacuum, Adv. Theor. Math. Phys. 5 (2002) 353 [hep-th/0012251] [SPIRES].MathSciNetGoogle Scholar
  80. [80]
    L. Bonora, D. Mamone and M. Salizzoni, Vacuum string field theory with B field, JHEP 04 (2002) 020 [hep-th/0203188] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  81. [81]
    L. Bonora, D. Mamone and M. Salizzoni, Vacuum string field theory ancestors of the GMS solitons, JHEP 01 (2003) 013 [hep-th/0207044] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  82. [82]
    L. Bonora, C. Maccaferri, D. Mamone and M. Salizzoni, Topics in string field theory, hep-th/0304270 [SPIRES].
  83. [83]
    D. Gaiotto, L. Rastelli, A. Sen and B. Zwiebach, Ghost structure and closed strings in vacuum string field theory, Adv. Theor. Math. Phys. 6 (2003) 403 [hep-th/0111129] [SPIRES].MathSciNetGoogle Scholar
  84. [84]
    Y. Okawa, Some exact computations on the twisted butterfly state in string field theory, JHEP 01 (2004) 066 [hep-th/0310264] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  85. [85]
    Y. Okawa, Solving Witten’s string field theory using the butterfly state, Phys. Rev. D 69 (2004) 086001 [hep-th/0311115] [SPIRES].MathSciNetADSGoogle Scholar
  86. [86]
    I. Ellwood, Rolling to the tachyon vacuum in string field theory, JHEP 12 (2007) 028 [arXiv:0705.0013] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  87. [87]
    T. Erler, Marginal Solutions for the Superstring, JHEP 07 (2007) 050 [arXiv:0704.0930] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  88. [88]
    E. Fuchs, M. Kroyter and R. Potting, Marginal deformations in string field theory, JHEP 09 (2007) 101 [arXiv:0704.2222] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  89. [89]
    A. Recknagel and V. Schomerus, Boundary deformation theory and moduli spaces of D-branes, Nucl. Phys. B 545 (1999) 233 [hep-th/9811237] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  90. [90]
    A. Sen and B. Zwiebach, Large marginal deformations in string field theory, JHEP 10 (2000) 009 [hep-th/0007153] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  91. [91]
    A. Iqbal and A. Naqvi, On marginal deformations in superstring field theory, JHEP 01 (2001) 040 [hep-th/0008127] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  92. [92]
    T. Takahashi and S. Tanimoto, Wilson lines and classical solutions in cubic open string field theory, Prog. Theor. Phys. 106 (2001) 863 [hep-th/0107046] [SPIRES].MATHMathSciNetADSCrossRefGoogle Scholar
  93. [93]
    J. Kluson, Exact solutions in SFT and marginal deformation in BCFT, JHEP 12 (2003) 050 [hep-th/0303199] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  94. [94]
    I. Kishimoto and T. Takahashi, Marginal deformations and classical solutions in open superstring field theory, JHEP 11 (2005) 051 [hep-th/0506240] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  95. [95]
    M. Schnabl, Comments on marginal deformations in open string field theory, Phys. Lett. B 654 (2007) 194 [hep-th/0701248] [SPIRES].MathSciNetADSGoogle Scholar
  96. [96]
    M. Kiermaier, Y. Okawa, L. Rastelli and B. Zwiebach, Analytic solutions for marginal deformations in open string field theory, JHEP 01 (2008) 028 [hep-th/0701249] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  97. [97]
    M. Kiermaier and Y. Okawa, Exact marginality in open string field theory: a general framework, JHEP 11 (2009) 041 [arXiv:0707.4472] [SPIRES].CrossRefGoogle Scholar
  98. [98]
    B.-H. Lee, C. Park and D.D. Tolla, Marginal Deformations as Lower Dimensional D-brane Solutions in Open String Field theory, arXiv:0710.1342 [SPIRES].
  99. [99]
    O.-K. Kwon, Marginally Deformed Rolling Tachyon around the Tachyon Vacuum in Open String Field Theory, Nucl. Phys. B 804 (2008) 1 [arXiv:0801.0573] [SPIRES].ADSCrossRefGoogle Scholar
  100. [100]
    I. Kishimoto, Comments on gauge invariant overlaps for marginal solutions in open string field theory, Prog. Theor. Phys. 120 (2008) 875 [arXiv:0808.0355] [SPIRES].MATHADSCrossRefGoogle Scholar
  101. [101]
    Y. Okawa, Analytic solutions for marginal deformations in open superstring field theory, JHEP 09 (2007) 084 [arXiv:0704.0936] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  102. [102]
    Y. Okawa, Real analytic solutions for marginal deformations in open superstring field theory, JHEP 09 (2007) 082 [arXiv:0704.3612] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  103. [103]
    M. Kiermaier and Y. Okawa, General marginal deformations in open superstring field theory, JHEP 11 (2009) 042 [arXiv:0708.3394] [SPIRES].CrossRefGoogle Scholar
  104. [104]
    A. Sen, Rolling Tachyon, JHEP 04 (2002) 048 [hep-th/0203211] [SPIRES].ADSCrossRefGoogle Scholar
  105. [105]
    A. Sen, Time evolution in open string theory, JHEP 10 (2002) 003 [hep-th/0207105] [SPIRES].ADSCrossRefGoogle Scholar
  106. [106]
    E. Coletti, I. Sigalov and W. Taylor, Taming the tachyon in cubic string field theory, JHEP 08 (2005) 104 [hep-th/0505031] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  107. [107]
    V. Forini, G. Grignani and G. Nardelli, A solution to the 4-tachyon off-shell amplitude in cubic string field theory, JHEP 04 (2006) 053 [hep-th/0603206] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  108. [108]
    E. Fuchs and M. Kroyter, On the classical equivalence of superstring field theories, JHEP 10 (2008) 054 [arXiv:0805.4386] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  109. [109]
    M. Kroyter, Comments on superstring field theory and its vacuum solution, JHEP 08 (2009) 048 [arXiv:0905.3501] [SPIRES].ADSCrossRefGoogle Scholar
  110. [110]
    I.Y. Aref’eva, A.S. Koshelev, D.M. Belov and P.B. Medvedev, Tachyon condensation in cubic superstring field theory, Nucl. Phys. B 638 (2002) 3 [hep-th/0011117] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  111. [111]
    I.Y. Aref’eva, L.V. Joukovskaya and A.S. Koshelev, Time evolution in superstring field theory on non-BPS brane. I: Rolling tachyon and energy-momentum conservation, JHEP 09 (2003) 012 [hep-th/0301137] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  112. [112]
    J. Llosa and J. Vives, Hamiltonian formalism for nonlocal Lagrangians, J. Math. Phys. 35 (1994) 2856.MATHMathSciNetADSCrossRefGoogle Scholar
  113. [113]
    J. Gomis, K. Kamimura and J. Llosa, Hamiltonian formalism for space-time non-commutative theories, Phys. Rev. D 63 (2001) 045003 [hep-th/0006235] [SPIRES].MathSciNetADSGoogle Scholar
  114. [114]
    K. Bering, A note on non-locality and Ostrogradski’s construction, hep-th/0007192 [SPIRES].
  115. [115]
    T.-C. Cheng, P.-M. Ho and M.-C. Yeh, Perturbative Approach to Higher Derivative and Nonlocal Theories, Nucl. Phys. B 625 (2002) 151 [hep-th/0111160] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  116. [116]
    V.S. Vladimirov and Y.I. Volovich, On the nonlinear dynamical equation in the p-adic string theory, Theor. Math. Phys. 138 (2004) 297 [math-ph/0306018] [SPIRES].MATHMathSciNetCrossRefGoogle Scholar
  117. [117]
    J. Gomis, K. Kamimura and T. Ramirez, Physical reduced phase space of non-local theories, Nucl. Phys. B 696 (2004) 263 [hep-th/0311184] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  118. [118]
    D.V. Prokhorenko, On some nonlinear integral equation in the (super)string theory, math-ph/0611068 [SPIRES].
  119. [119]
    V. Vladimirov, Nonlinear equations for p-adic open, closed and open- closed strings, Theor. Math. Phys. 149 (2006) 1604 [arXiv:0705.4600] [SPIRES].MATHCrossRefGoogle Scholar
  120. [120]
    N. Barnaby and N. Kamran, Dynamics with Infinitely Many Derivatives: The Initial Value Problem, JHEP 02 (2008) 008 [arXiv:0709.3968] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  121. [121]
    N. Barnaby and N. Kamran, Dynamics with Infinitely Many Derivatives: Variable Coefficient Equations, JHEP 12 (2008) 022 [arXiv:0809.4513] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  122. [122]
    Y. Volovich, Numerical study of nonlinear equations with infinite number of derivatives, J. Phys. A 36 (2003) 8685 [math-ph/0301028] [SPIRES].MathSciNetADSGoogle Scholar
  123. [123]
    V. Forini, G. Grignani and G. Nardelli, A new rolling tachyon solution of cubic string field theory, JHEP 03 (2005) 079 [hep-th/0502151] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  124. [124]
    V.S. Vladimirov, On the equation of the p-adic open string for the scalar tachyon field, math-ph/0507018 [SPIRES].
  125. [125]
    L. Joukovskaya, Dynamics in Nonlocal Cosmological Models Derived from String Field Theory, Phys. Rev. D 76 (2007) 105007 [arXiv:0707.1545] [SPIRES].MathSciNetADSGoogle Scholar
  126. [126]
    L. Joukovskaya, Rolling Solution for Tachyon Condensation in Open String Field Theory, arXiv:0803.3484 [SPIRES].
  127. [127]
    D.J. Mulryne and N.J. Nunes, Diffusing non-local inflation: Solving the field equations as an initial value problem, Phys. Rev. D 78 (2008) 063519 [arXiv:0805.0449] [SPIRES].MathSciNetADSGoogle Scholar
  128. [128]
    L. Joukovskaya, Dynamics with Infinitely Many Time Derivatives in Friedmann-Robertson-Walker Background and Rolling Tachyon, JHEP 02 (2009) 045 [arXiv:0807.2065] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  129. [129]
    N.J. Nunes and D.J. Mulryne, Non-linear non-local Cosmology, AIP Conf. Proc. 1115 (2009) 329 [arXiv:0810.5471] [SPIRES].ADSCrossRefGoogle Scholar
  130. [130]
    G. Calcagni, Cosmological tachyon from cubic string field theory, JHEP 05 (2006) 012 [hep-th/0512259] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  131. [131]
    J. Polchinski, String theory, Cambridge University Press, Cambridge U.K. (1998).Google Scholar
  132. [132]
    B. Zwiebach, A first course in string theory, Cambridge University Press, Cambridge U.K. (2009).MATHGoogle Scholar
  133. [133]
    T. Erler and M. Schnabl, A Simple Analytic Solution for Tachyon Condensation, JHEP 10 (2009) 066 [arXiv:0906.0979] [SPIRES].CrossRefGoogle Scholar
  134. [134]
    I.Y. Aref’eva and L.V. Joukovskaya, Time lumps in nonlocal stringy models and cosmological applications, JHEP 10 (2005) 087 [hep-th/0504200] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  135. [135]
    I.Y. Aref’eva, L.V. Joukovskaya and S.Y. Vernov, Bouncing and Accelerating Solutions in Nonlocal Stringy Models, JHEP 07 (2007) 087 [hep-th/0701184] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  136. [136]
    I.Y. Aref’eva, L.V. Joukovskaya and S.Y. Vernov, Dynamics in nonlocal linear models in the Friedmann-Robertson-Walker metric, J. Phys. A 41 (2008) 304003 [arXiv:0711.1364] [SPIRES].MathSciNetGoogle Scholar
  137. [137]
    S.Y. Vernov, Localization of Non-local Cosmological Models with Quadratic Potentials in the case of Double Roots, Class. Quant. Grav. 27 (2010) 035006 [arXiv:0907.0468] [SPIRES].CrossRefGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Institute for Gravitation and the Cosmos, Department of PhysicsThe Pennsylvania State UniversityUniversity ParkU.S.A.
  2. 2.Max Planck Institute for Gravitational Physics (Albert Einstein Institute)GolmGermany
  3. 3.Dipartimento di Matematica e FisicaUniversità CattolicaBresciaItaly
  4. 4.INFN Gruppo Collegato di TrentoUniversità di TrentoPovo (Trento)Italy

Personalised recommendations