Advertisement

Journal of High Energy Physics

, 2010:58 | Cite as

A supermatrix model for \( \mathcal{N} \) = 6 super Chern-Simons-matter theory

  • Nadav DrukkerEmail author
  • Diego Trancanelli
Open Access
Article

Abstract

We construct the Wilson loop operator of \( \mathcal{N} \) = 6 super Chern-Simons-matter which is invariant under half of the supercharges of the theory and is dual to the simplest macroscopic open string in AdS 4 ×ℂℙ3. The Wilson loop couples, in addition to the gauge and scalar fields of the theory, also to the fermions in the bi-fundamental representation of the U(N) × U(M) gauge group. These ingredients are naturally combined into a superconnection whose holonomy gives the Wilson loop, which can be defined for any representation of the supergroup U(N|M). Explicit expressions for loops supported along an infinite straight line and along a circle are presented. Using the localization calculation of Kapustin et al. we show that the circular loop is computed by a supermatrix model and discuss the connection to pure Chern-Simons theory with supergroup U(N|M).

Keywords

Matrix Models Supersymmetric gauge theory AdS-CFT Correspondence Chern-Simons Theories 

References

  1. [1]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, \( \mathcal{N} \) = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    J. Bagger and N. Lambert, Gauge Symmetry and Supersymmetry of Multiple M2-Branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [SPIRES].MathSciNetADSGoogle Scholar
  5. [5]
    J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  6. [6]
    S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large-N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    N. Drukker, J. Plefka and D. Young, Wilson loops in 3-dimensional \( \mathcal{N} \) = 6 supersymmetric Chern-Simons Theory and their string theory duals, JHEP 11 (2008) 019 [arXiv:0809.2787] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    B. Chen and J.-B. Wu, Supersymmetric Wilson Loops in \( \mathcal{N} \) = 6 Super Chern-Simons- matter theory, Nucl. Phys. B 825 (2010) 38 [arXiv:0809.2863] [SPIRES].CrossRefGoogle Scholar
  9. [9]
    S.-J. Rey, T. Suyama and S. Yamaguchi, Wilson Loops in Superconformal Chern-Simons Theory and Fundamental Strings in Anti-de Sitter Supergravity Dual, JHEP 03 (2009) 127 [arXiv:0809.3786] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    D. Gaiotto and X. Yin, Notes on superconformal Chern-Simons-matter theories, JHEP 08 (2007) 056 [arXiv:0704.3740] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    J.K. Erickson, G.W. Semenoff and K. Zarembo, Wilson loops in \( \mathcal{N} \) = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 582 (2000) 155 [hep-th/0003055] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  12. [12]
    N. Drukker and D.J. Gross, An exact prediction of \( \mathcal{N} \) = 4 SUSYM theory for string theory, J. Math. Phys. 42 (2001) 2896 [hep-th/0010274] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  13. [13]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, arXiv:0712.2824 [SPIRES].
  14. [14]
    G.P. Korchemsky, Asymptotics of the Altarelli-Parisi-Lipatov Evolution Kernels of Parton Distributions, Mod. Phys. Lett. A 4 (1989) 1257 [SPIRES].ADSGoogle Scholar
  15. [15]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, A semi-classical limit of the gauge/string correspondence, Nucl. Phys. B 636 (2002) 99 [hep-th/0204051] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    S. Frolov and A.A. Tseytlin, Semiclassical quantization of rotating superstring in AdS 5 × S 5, JHEP 06 (2002) 007 [hep-th/0204226] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    M. Kruczenski, A note on twist two operators in \( \mathcal{N} \) = 4 SYM and Wilson loops in Minkowski signature, JHEP 12 (2002) 024 [hep-th/0210115] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech. (2007) P01021 [hep-th/0610251] [SPIRES].
  19. [19]
    Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, The Four-Loop Planar Amplitude and Cusp Anomalous Dimension in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev. D 75 (2007) 085010 [hep-th/0610248] [SPIRES].MathSciNetADSGoogle Scholar
  20. [20]
    M.K. Benna, S. Benvenuti, I.R. Klebanov and A. Scardicchio, A test of the AdS/CFT correspondence using high-spin operators, Phys. Rev. Lett. 98 (2007) 131603 [hep-th/0611135] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    F. Cachazo, M. Spradlin and A. Volovich, Four-Loop Cusp Anomalous Dimension From Obstructions, Phys. Rev. D 75 (2007) 105011 [hep-th/0612309] [SPIRES].MathSciNetADSGoogle Scholar
  22. [22]
    T. Nishioka and T. Takayanagi, On Type IIA Penrose Limit and \( \mathcal{N} \) = 6 Chern-Simons Theories, JHEP 08 (2008) 001 [arXiv:0806.3391] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    D. Gaiotto, S. Giombi and X. Yin, Spin Chains in \( \mathcal{N} \) = 6 Superconformal Chern-Simons-Matter Theory, JHEP 04 (2009) 066 [arXiv:0806.4589] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  24. [24]
    G. Grignani, T. Harmark and M. Orselli, The SU(2) × SU(2) sector in the string dual of \( \mathcal{N} \) = 6 superconformal Chern-Simons theory, Nucl. Phys. B 810 (2009) 115 [arXiv:0806.4959] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, arXiv:0909.4559 [SPIRES].
  26. [26]
    M. Mariño and P. Putrov, Exact Results in ABJM Theory from Topological Strings, arXiv:0912.3074 [SPIRES].
  27. [27]
    T. Suyama, On Large-N Solution of ABJM Theory, arXiv:0912.1084 [SPIRES].
  28. [28]
    A. Kapustin and N. Saulina, Chern-Simons-Rozansky-Witten topological field theory, Nucl. Phys. B 823 (2009) 403 [arXiv:0904.1447] [SPIRES].CrossRefMathSciNetGoogle Scholar
  29. [29]
    N. Drukker, J. Gomis and D. Young, Vortex Loop Operators, M2-branes and Holography, JHEP 03 (2009) 004 [arXiv:0810.4344] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    D. Berenstein and D. Trancanelli, Three-dimensional \( \mathcal{N} \) = 6 SCFT’s and their membrane dynamics, Phys. Rev. D 78 (2008) 106009 [arXiv:0808.2503] [SPIRES].MathSciNetADSGoogle Scholar
  31. [31]
    M.A. Bandres, A.E. Lipstein and J.H. Schwarz, Studies of the ABJM Theory in a Formulation with Manifest SU(4) R-Symmetry, JHEP 09 (2008) 027 [arXiv:0807.0880] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  32. [32]
    M. Mariño, Chern-Simons theory, matrix integrals and perturbative three-manifold invariants, Commun. Math. Phys. 253 (2004) 25 [hep-th/0207096] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    M. Aganagic, A. Klemm, M. Mariño and C. Vafa, Matrix model as a mirror of Chern-Simons theory, JHEP 02 (2004) 010 [hep-th/0211098] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    N. Halmagyi and V. Yasnov, The spectral curve of the lens space matrix model, JHEP 11 (2009) 104 [hep-th/0311117] [SPIRES].CrossRefGoogle Scholar
  35. [35]
    N. Halmagyi, T. Okuda and V. Yasnov, Large-N duality, lens spaces and the Chern-Simons matrix model, JHEP 04 (2004) 014 [hep-th/0312145] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  36. [36]
    M. Mariño, S. Pasquetti and P. Putrov, Large-N duality beyond the genus expansion, arXiv:0911.4692 [SPIRES].
  37. [37]
    N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, Wilson loops: From four-dimensional SYM to two-dimensional YM, Phys. Rev. D 77 (2008) 047901 [arXiv:0707.2699] [SPIRES].MathSciNetADSGoogle Scholar
  38. [38]
    V. Pestun, Localization of the four-dimensional \( \mathcal{N} \) = 4 SYM to a two- sphere and 1/8 BPS Wilson loops, arXiv:0906.0638 [SPIRES].
  39. [39]
    E. Witten, Two-dimensional gauge theories revisited, J. Geom. Phys. 9 (1992) 303 [hep-th/9204083] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  40. [40]
    M. Staudacher and W. Krauth, Two-dimensional QCD in the Wu-Mandelstam-Leibbrandt prescription, Phys. Rev. D 57 (1998) 2456 [hep-th/9709101] [SPIRES].ADSGoogle Scholar
  41. [41]
    A. Bassetto and L. Griguolo, Two-dimensional QCD, instanton contributions and the perturbative Wu-Mandelstam-Leibbrandt prescription, Phys. Lett. B 443 (1998) 325 [hep-th/9806037] [SPIRES].ADSGoogle Scholar
  42. [42]
    S. Giombi and V. Pestun, The 1/2 BPS ’t Hooft loops in \( \mathcal{N} \) = 4 SYM as instantons in 2D Yang-Mills, arXiv:0909.4272 [SPIRES].
  43. [43]
    J. Gomis and F. Passerini, Holographic Wilson loops, JHEP 08 (2006) 074 [hep-th/0604007] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  44. [44]
    N. Drukker and B. Fiol, All-genus calculation of Wilson loops using D-branes, JHEP 02 (2005) 010 [hep-th/0501109] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  45. [45]
    S. Yamaguchi, Wilson loops of anti-symmetric representation and D5-branes, JHEP 05 (2006) 037 [hep-th/0603208] [SPIRES].CrossRefADSGoogle Scholar
  46. [46]
    J. Gomis and F. Passerini, Wilson loops as D3-branes, JHEP 01 (2007) 097 [hep-th/0612022] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  47. [47]
    S. Yamaguchi, Bubbling geometries for half BPS Wilson lines, Int. J. Mod. Phys. A 22 (2007) 1353 [hep-th/0601089] [SPIRES].ADSGoogle Scholar
  48. [48]
    O. Lunin, On gravitational description of Wilson lines, JHEP 06 (2006) 026 [hep-th/0604133] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  49. [49]
    E. D’Hoker, J. Estes and M. Gutperle, Gravity duals of half-BPS Wilson loops, JHEP 06 (2007) 063 [arXiv:0705.1004] [SPIRES].CrossRefMathSciNetGoogle Scholar
  50. [50]
    T. Okuda and D. Trancanelli, Spectral curves, emergent geometry and bubbling solutions for Wilson loops, JHEP 09 (2008) 050 [arXiv:0806.4191] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  51. [51]
    D. Gaiotto and E. Witten, Janus Configurations, Chern-Simons Couplings, And The Theta-Angle in \( \mathcal{N} \) = 4 Super Yang-Mills Theory, arXiv:0804.2907 [SPIRES].
  52. [52]
    K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, \( \mathcal{N} \) = 4 Superconformal Chern-Simons Theories with Hyper and Twisted Hyper Multiplets, JHEP 07 (2008) 091 [arXiv:0805.3662] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  53. [53]
    K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, \( \mathcal{N} \) = 5, 6 Superconformal Chern-Simons Theories and M2-branes on Orbifolds, JHEP 09 (2008) 002 [arXiv:0806.4977] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  54. [54]
    K. Zarembo, Supersymmetric Wilson loops, Nucl. Phys. B 643 (2002) 157 [hep-th/0205160] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  55. [55]
    N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, Supersymmetric Wilson loops on S 3, JHEP 05 (2008) 017 [arXiv:0711.3226] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  56. [56]
    A. Dymarsky and V. Pestun, Supersymmetric Wilson loops in \( \mathcal{N} \) = 4 SYM and pure spinors, arXiv:0911.1841 [SPIRES].

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Institut für PhysikHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Department of PhysicsUniversity of CaliforniaSanta BarbaraU.S.A.
  3. 3.Kavli Institute for Theoretical PhysicsUniversity of CaliforniaSanta BarbaraU.S.A.

Personalised recommendations