Journal of High Energy Physics

, 2010:54 | Cite as

Exploring positive monad bundles and a new heterotic standard model

  • Lara B. Anderson
  • James Gray
  • Yang-Hui He
  • Andre Lukas
Article

Abstract

A complete analysis of all heterotic Calabi-Yau compactifications based on positive two-term monad bundles over favourable complete intersection Calabi-Yau threefolds is performed. We show that the original data set of about 7000 models contains 91 standard-like models which we describe in detail. A closer analysis of Wilson-line breaking for these models reveals that none of them gives rise to precisely the matter field content of the standard model. We conclude that the entire set of positive two-term monads on complete intersection Calabi-Yau manifolds is ruled out on phenomenological grounds. We also take a first step in analyzing the larger class of non-positive monads. In particular, we construct a supersymmetric heterotic standard model within this class. This model has the standard model gauge group and an additional U(1)BL symmetry, precisely three families of quarks and leptons, one pair of Higgs doublets and no anti-families or exotics of any kind.

Keywords

Superstrings and Heterotic Strings Differential and Algebraic Geometry M-Theory 

References

  1. [1]
    P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Vacuum configurations for superstrings, Nucl. Phys. B 258 (1985) 46 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    E. Witten, New issues in manifolds of SU(3) holonomy, Nucl. Phys. B 268 (1986) 79 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    M.B. Green, J.H. Schwarz and E. Witten, Superstring theory, volume 2, Cambridge University Press, Cambridge U.K. (1987).MATHGoogle Scholar
  4. [4]
    A. Lukas, B.A. Ovrut, K.S. Stelle and D. Waldram, The universe as a domain wall, Phys. Rev. D 59 (1999) 086001 [hep-th/9803235] [SPIRES].MathSciNetADSGoogle Scholar
  5. [5]
    L.B. Anderson, Y.-H. He and A. Lukas, Heterotic compactification, an algorithmic approach, JHEP 07 (2007) 049 [hep-th/0702210] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    L.B. Anderson, Y.-H. He and A. Lukas, Monad bundles in heterotic string compactifications, JHEP 07 (2008) 104 [arXiv:0805.2875] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    L.B. Anderson, Heterotic and M-theory Compactifications for String Phenomenology, arXiv:0808.3621 [SPIRES].
  8. [8]
    R. Donagi, Y.-H. He, B.A. Ovrut and R. Reinbacher, The particle spectrum of heterotic compactifications, JHEP 12 (2004) 054 [hep-th/0405014] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    Y.-H. He, GUT particle spectrum from heterotic compactification, Mod. Phys. Lett. A 20 (2005) 1483 [SPIRES].ADSGoogle Scholar
  10. [10]
    R. Donagi, Y.-H. He, B.A. Ovrut and R. Reinbacher, Moduli dependent spectra of heterotic compactifications, Phys. Lett. B 598 (2004) 279 [hep-th/0403291] [SPIRES].MathSciNetADSGoogle Scholar
  11. [11]
    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, A heterotic standard model, Phys. Lett. B 618 (2005) 252 [hep-th/0501070] [SPIRES].MathSciNetADSGoogle Scholar
  12. [12]
    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, A standard model from the E 8 × E 8 heterotic superstring, JHEP 06 (2005) 039 [hep-th/0502155] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  13. [13]
    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, The exact MSSM spectrum from string theory, JHEP 05 (2006) 043 [hep-th/0512177] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    V. Bouchard and R. Donagi, An SU(5) heterotic standard model, Phys. Lett. B 633 (2006) 783 [hep-th/0512149] [SPIRES].MathSciNetADSGoogle Scholar
  15. [15]
    R. Donagi, Y.-H. He, B.A. Ovrut and R. Reinbacher, Higgs doublets, split multiplets and heterotic SU(3)C × SU(2)L × U(1)Y spectra, Phys. Lett. B 618 (2005) 259 [hep-th/0409291] [SPIRES].ADSGoogle Scholar
  16. [16]
    R. Donagi, Y.-H. He, B.A. Ovrut and R. Reinbacher, The spectra of heterotic standard model vacua, JHEP 06 (2005) 070 [hep-th/0411156] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    R. Blumenhagen, S. Moster and T. Weigand, Heterotic GUT and standard model vacua from simply connected Calabi-Yau manifolds, Nucl. Phys. B 751 (2006) 186 [hep-th/0603015] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    R. Blumenhagen, S. Moster, R. Reinbacher and T. Weigand, Massless spectra of three generation U(N) heterotic string vacua, JHEP 05 (2007) 041 [hep-th/0612039] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    V. Bouchard, M. Cvetič and R. Donagi, Tri-linear couplings in an heterotic minimal supersymmetric standard model, Nucl. Phys. B 745 (2006) 62 [hep-th/0602096] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    A. Bak, V. Bouchard and R. Donagi, Exploring a new peak in the heterotic landscape, arXiv:0811.1242 [SPIRES].
  21. [21]
    L.B. Anderson, J. Gray, D. Grayson, Y.-H. He and A. Lukas, Yukawa couplings in heterotic compactification, arXiv:0904.2186 [SPIRES].
  22. [22]
    Y.-H. He, S.-J. Lee and A. Lukas, Heterotic models from vector bundles on toric Calabi-Yau manifolds, arXiv:0911.0865 [SPIRES].
  23. [23]
    O. Lebedev, H.P. Nilles, S. Ramos-Sanchez, M. Ratz and P.K.S. Vaudrevange, Heterotic mini-landscape (II): completing the search for MSSM vacua in a Z 6 orbifold, Phys. Lett. B 668 (2008) 331 [arXiv:0807.4384] [SPIRES].MathSciNetADSGoogle Scholar
  24. [24]
    O. Lebedev et al., The heterotic road to the MSSM with R parity, Phys. Rev. D 77 (2008) 046013 [arXiv:0708.2691] [SPIRES].ADSGoogle Scholar
  25. [25]
    O. Lebedev et al., Low energy supersymmetry from the heterotic landscape, Phys. Rev. Lett. 98 (2007) 181602 [hep-th/0611203] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    O. Lebedev et al., A mini-landscape of exact MSSM spectra in heterotic orbifolds, Phys. Lett. B 645 (2007) 88 [hep-th/0611095] [SPIRES].ADSGoogle Scholar
  27. [27]
    T. Kobayashi, S. Raby and R.-J. Zhang, Constructing 5D orbifold grand unified theories from heterotic strings, Phys. Lett. B 593 (2004) 262 [hep-ph/0403065] [SPIRES].MathSciNetADSGoogle Scholar
  28. [28]
    T. Kobayashi, S. Raby and R.-J. Zhang, Searching for realistic 4d string models with a Pati-Salam symmetry: orbifold grand unified theories from heterotic string compactification on a Z(6) orbifold, Nucl. Phys. B 704 (2005) 3.CrossRefMathSciNetADSGoogle Scholar
  29. [29]
    W. Buchmüller, K. Hamaguchi, O. Lebedev and M. Ratz, Supersymmetric standard model from the heterotic string, Phys. Rev. Lett. 96 (2006) 121602.CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    W. Buchmüller, K. Hamaguchi, O. Lebedev and M. Ratz, Supersymmetric standard model from the heterotic string. II, Nucl. Phys. B 785 (2007) 149.CrossRefADSGoogle Scholar
  31. [31]
    S. Förste, H.P. Nilles, P.K.S. Vaudrevange and A. Wingerter, Heterotic brane world, Phys. Rev. D 70 (2004) 106008.ADSGoogle Scholar
  32. [32]
    T. Kobayashi, H.P. Nilles, F. Ploger, S. Raby and M. Ratz, Stringy origin of non-abelian discrete flavor symmetries, Nucl. Phys. B 768 (2007) 135.CrossRefMathSciNetADSGoogle Scholar
  33. [33]
    P. Candelas, A.M. Dale, C.A. Lütken and R. Schimmrigk, Complete intersection Calabi-Yau manifolds, Nucl. Phys. B 298 (1988) 493.CrossRefADSGoogle Scholar
  34. [34]
    P. Candelas, C.A. Lütken and R. Schimmrigk, Complete intersection Calabi-Yau manifolds. 2. Three generation manifolds, Nucl. Phys. B 306 (1988) 113.CrossRefADSGoogle Scholar
  35. [35]
    P.S. Green, T. Hubsch and C.A. Lütken, All Hodge numbers of all complete intersection Calabi-Yau manifolds, Class. Quant. Grav. 6 (1989) 105.MATHCrossRefADSGoogle Scholar
  36. [36]
    A.-m. He and P. Candelas, On the number of complete intersection Calabi-Yau manifolds, Commun. Math. Phys. 135 (1990) 193.MATHCrossRefMathSciNetADSGoogle Scholar
  37. [37]
    M. Gagnon and Q. Ho-Kim, An exhaustive list of complete intersection Calabi-Yau manifolds, Mod. Phys. Lett. A 9 (1994) 2235.MathSciNetADSGoogle Scholar
  38. [38]
    P. Candelas and R. Davies, New Calabi-Yau Manifolds with small Hodge numbers, arXiv:0809.4681 [SPIRES].
  39. [39]
    T. Hubsch, Calabi-Yau Manifolds — A bestiary for physicists, World Scientific, Singapore (1994).Google Scholar
  40. [40]
    J. Distler and B.R. Greene, Aspects of (2, 0) string compactifications, Nucl. Phys. B 304 (1988) 1.CrossRefMathSciNetADSGoogle Scholar
  41. [41]
    S. Kachru, Some three generation (0, 2) Calabi-Yau models, Phys. Lett. B 349 (1995) 76.CrossRefMathSciNetADSGoogle Scholar
  42. [42]
    M.R. Douglas and C.-g. Zhou, Chirality change in string theory, JHEP 06 (2004) 014.CrossRefMathSciNetADSGoogle Scholar
  43. [43]
    L.B. Anderson, Y.H. He and A. Lukas, Algorithmic proofs of vector bundle stability, to appear.Google Scholar
  44. [44]
    L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Stability walls in heterotic theories, JHEP 09 (2009) 026.CrossRefGoogle Scholar
  45. [45]
    L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, The edge of supersymmetry: stability walls in heterotic theory, Phys. Lett. B 677 (2009) 190.MathSciNetADSGoogle Scholar
  46. [46]
    L.B. Anderson, J. Gray, Y.H. He and A. Lukas, Compactifying on complete intersections, to appear.Google Scholar
  47. [47]
    G. Horrocks and D. Mumford, A rank 2 vector bundle on \( {\mathbb{P}^4} \) with 15000 symmetries, Topology 12 (1973) 63.MATHCrossRefMathSciNetGoogle Scholar
  48. [48]
    A. Beilinson, Coherent sheaves on \( {\mathbb{P}^n} \) and problems in linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978) 68.MATHCrossRefMathSciNetGoogle Scholar
  49. [49]
    M. Maruyama, Moduli of stable sheaves, II, J. Math. Kyoto Univ. 18 (1978) 557.MATHMathSciNetGoogle Scholar
  50. [50]
    C. Okonek, M. Schneider, H. Spindler, Vector bundles on complex projective spaces, Birkhauser Verlag, Germany (1988).Google Scholar
  51. [51]
    W. Fulton and R. Lazarsfeld, On the connectedness of degeneracy loci and special divisors, Acta Math. 146 (1981) 271.MATHCrossRefMathSciNetGoogle Scholar
  52. [52]
    K. Uhlenbeck and S.-T. Yau, On the existence of Hermitian Yang-Mills connections in stable bundles, Comm. Pure App. Math. 39 (1986) 257.MATHCrossRefMathSciNetGoogle Scholar
  53. [53]
    K. Uhlenbeck and S.-T. Yau, A note on our previous paper: on the existence of hermitian Yang-Mills connections in stable vector bundles, Comm. Pure App. Math. 42 (1986) 703.CrossRefMathSciNetGoogle Scholar
  54. [54]
    S. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. 3 (1985) 1.CrossRefMathSciNetGoogle Scholar
  55. [55]
    M.C. Brambilla, Semistability of certain bundles on a quintic Calabi-Yau threefold, math.AG/0509599.
  56. [56]
    D. Mumford, J. Fogarty and F. Kirwan, Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete volume 2, Springer-Verlag, Berlin Germany (1994).Google Scholar
  57. [57]
    F. Knop, H. Kraft, D. Luna and T. Vust, Local properties of algebraic group actions, in Algebraische Transformationsgruppen und Invariantentheorie, DMV Seminar 13, Birkhäuser, Basel Switzerland (1989).Google Scholar
  58. [58]
    R. Donagi, B.A. Ovrut, T. Pantev and R. Reinbacher, SU(4) instantons on Calabi-Yau threefolds with Z 2 × Z 2 fundamental group, JHEP 01 (2004) 022.CrossRefMathSciNetADSGoogle Scholar
  59. [59]
    W. Fulton and J. Harris, Representation theory: a first course, Springer, New York U.S.A. (1991).MATHGoogle Scholar
  60. [60]
    R. Hartshorne, Algebraic geometry, springer, Graduate Text in Mathematics volume 52, Springer-Verlag, Germany (1977).Google Scholar
  61. [61]
    P. Griffith and J. Harris, Principles of algebraic geometry, Wiley Interscience, U.S.A. (1978).Google Scholar
  62. [62]
    J.D. Breit, B.A. Ovrut and G.C. Segre, E 6 symmetry breaking in the superstring theory, Phys. Lett. B 158 (1985) 33.ADSGoogle Scholar
  63. [63]
    V. Braun, Three generations on the quintic quotient, arXiv:0909.5682 [SPIRES].
  64. [64]
    P. Candelas, X. de la Ossa, Y.-H. He and B. Szendroi, Triadophilia: a special corner in the landscape, Adv. Theor. Math. Phys. 12 (2008) 2.Google Scholar
  65. [65]
    V. Braun, B.A. Ovrut, T. Pantev and R. Reinbacher, Elliptic Calabi-Yau threefolds with Z(3) × Z(3) Wilson lines, JHEP 12 (2004) 062.CrossRefMathSciNetADSGoogle Scholar
  66. [66]
    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, Vector bundle extensions, sheaf cohomology and the heterotic standard model, Adv. Theor. Math. Phys. 10 (2006) 4.MathSciNetGoogle Scholar
  67. [67]
    M. Ambroso and B. Ovrut, The B-L/electroweak hierarchy in heterotic string and M-theory, JHEP 10 (2009) 011.CrossRefGoogle Scholar
  68. [68]
    M. Ambroso and B.A. Ovrut, The B-L/electroweak hierarchy in smooth heterotic compactifications, arXiv:0910.1129 [SPIRES].
  69. [69]
    V. Braun, P. Candelas and R. Davies, A three-generation Calabi-Yau manifold with small Hodge numbers, arXiv:0910.5464 [SPIRES].
  70. [70]
    V. Braun, M. Kreuzer, B.A. Ovrut and E. Scheidegger, Worldsheet instantons and torsion curves. Part A: direct computation, JHEP 10 (2007) 022.CrossRefMathSciNetADSGoogle Scholar
  71. [71]
    G.-M. Greuel, G. Pfister and H. Schönemann, Singular: a computer algebra system for polynomial computations, Centre for Computer Algebra, University of Kaiserslautern (2001), available at http://www.singular.uni-kl.de/.
  72. [72]
    D.G. Grayson and M.E. Stillman, Macaulay2, a software system for research in algebraic geometry, available at http://www.math.uiuc.edu/Macaulay2/.
  73. [73]
    D.J.S. Robinson, A course in the theory of groups, Graduate Texts in Mathematics, Springer, New York U.S.A. (1995).MATHGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Lara B. Anderson
    • 1
  • James Gray
    • 2
  • Yang-Hui He
    • 2
    • 3
    • 4
  • Andre Lukas
    • 2
  1. 1.Department of PhysicsUniversity of PennsylvaniaPhiladelphiaU.S.A.
  2. 2.Rudolf Peierls Centre for Theoretical PhysicsOxford UniversityOxfordU.K.
  3. 3.Merton CollegeOxfordU.K.
  4. 4.Department of MathematicsCity University LondonLondonU.K.

Personalised recommendations