Advertisement

Journal of High Energy Physics

, 2010:52 | Cite as

Manifestly supersymmetric RG flows

  • Matthias R. Gaberdiel
  • Stefan Hohenegger
Article

Abstract

Renormalisation group (RG) equations in two-dimensional \( \mathcal{N} = 1 \) supersymmetric field theories with boundary are studied. It is explained how a manifestly \( \mathcal{N} = 1 \) supersymmetric scheme can be chosen, and within this scheme the RG equations are determined to next-to-leading order. We also use these results to revisit the question of how brane obstructions and lines of marginal stability appear from a world-sheet perspective.

Keywords

Field Theories in Lower Dimensions Superspaces D-branes Renormalization Group 

References

  1. [1]
    F. Denef and G.W. Moore, Split states, entropy enigmas, holes and halos, hep-th/0702146 [SPIRES].
  2. [2]
    D. Gaiotto, G.W. Moore and A. Neitzke, Four-dimensional wall-crossing via three-dimensional field theory, arXiv:0807.4723 [SPIRES].
  3. [3]
    D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, hitchin systems and the WKB approximation, arXiv:0907.3987 [SPIRES].
  4. [4]
    I. Brunner, M.R. Gaberdiel, S. Hohenegger and C.A. Keller, Obstructions and lines of marginal stability from the world-sheet, JHEP 05 (2009) 007 [arXiv:0902.3177] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    S. Fredenhagen, M.R. Gaberdiel and C.A. Keller, Bulk induced boundary perturbations, J. Phys. A 40 (2007) F17 [hep-th/0609034] [SPIRES].MathSciNetGoogle Scholar
  6. [6]
    S. Fredenhagen, M.R. Gaberdiel and C.A. Keller, Symmetries of perturbed conformal field theories, J. Phys. A 40 (2007) 13685 [arXiv:0707.2511] [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    N.P. Warner, Supersymmetry in boundary integrable models, Nucl. Phys. B 450 (1995) 663 [hep-th/9506064] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    K. Hori and J. Walcher, F-term equations near Gepner points, JHEP 01 (2005) 008 [hep-th/0404196] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    M.R. Gaberdiel, A. Konechny and C. Schmidt-Colinet, Conformal perturbation theory beyond the leading order, J. Phys. A 42 (2009) 105402 [arXiv:0811.3149] [SPIRES].MathSciNetADSGoogle Scholar
  10. [10]
    M. Baumgartl, I. Brunner and M.R. Gaberdiel, D-brane superpotentials and RG flows on the quintic, JHEP 07 (2007) 061 [arXiv:0704.2666] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    M. Baumgartl and S. Wood, Moduli webs and superpotentials for five-branes, JHEP 06 (2009) 052 [arXiv:0812.3397] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    H. Jockers and M. Soroush, Effective superpotentials for compact D5-brane Calabi-Yau geometries, Commun. Math. Phys. 290 (2009) 249 [arXiv:0808.0761] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  13. [13]
    M. Alim, M. Hecht, P. Mayr and A. Mertens, Mirror symmetry for toric branes on compact hypersurfaces, JHEP 09 (2009) 126 [arXiv:0901.2937] [SPIRES].CrossRefGoogle Scholar
  14. [14]
    M. Alim et al., Hints for off-shell mirror symmetry in type-II/F-theory compactifications, arXiv:0909.1842 [SPIRES].
  15. [15]
    T.W. Grimm, T.-W. Ha, A. Klemm and D. Klevers, Computing brane and flux superpotentials in F-theory compactifications, arXiv:0909.2025 [SPIRES].
  16. [16]
    M. Aganagic and C. Beem, The geometry of D-brane superpotentials, arXiv:0909.2245 [SPIRES].
  17. [17]
    H. Ooguri, Y. Oz and Z. Yin, D-branes on Calabi-Yau spaces and their mirrors, Nucl. Phys. B 477 (1996) 407 [hep-th/9606112] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    A. Hanany and K. Hori, Branes and N = 2 theories in two dimensions, Nucl. Phys. B 513 (1998) 119 [hep-th/9707192] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    K. Hori, A. Iqbal and C. Vafa, D-branes and mirror symmetry, hep-th/0005247 [SPIRES].
  20. [20]
    K. Hori, Linear models of supersymmetric D-branes, hep-th/0012179 [SPIRES].
  21. [21]
    C. Albertsson, U. Lindström and M. Zabzine, N = 1 supersymmetric σ-model with boundaries. I, Commun. Math. Phys. 233 (2003) 403 [hep-th/0111161] [SPIRES].zbMATHADSGoogle Scholar
  22. [22]
    C. Albertsson, U. Lindström and M. Zabzine, N = 1 supersymmetric σ-model with boundaries. II, Nucl. Phys. B 678 (2004) 295 [hep-th/0202069] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    U. Lindström and M. Zabzine, N = 2 boundary conditions for non-linear σ-models and Landau-Ginzburg models, JHEP 02 (2003) 006 [hep-th/0209098] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    P. Koerber, S. Nevens and A. Sevrin, Supersymmetric non-linear σ-models with boundaries revisited, JHEP 11 (2003) 066 [hep-th/0309229] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    A. Sevrin, W. Staessens and A. Wijns, The world-sheet description of A and B branes revisited, JHEP 11 (2007) 061 [arXiv:0709.3733] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    A. Sevrin, W. Staessens and A. Wijns, An N = 2 worldsheet approach to D-branes in bihermitian geometries: I. Chiral and twisted chiral fields, JHEP 10 (2008) 108 [arXiv:0809.3659] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  27. [27]
    A. Sevrin, W. Staessens and A. Wijns, An N = 2 worldsheet approach to D-branes in bihermitian geometries: II. The general case, JHEP 09 (2009) 105 [arXiv:0908.2756] [SPIRES].CrossRefGoogle Scholar
  28. [28]
    M. Dörrzapf, The definition of Neveu-Schwarz superconformal fields and uncharged superconformal transformations, Rev. Math. Phys. 11 (1999) 137 [hep-th/9712107] [SPIRES].zbMATHCrossRefMathSciNetGoogle Scholar
  29. [29]
    B. DeWitt, Supermanifolds, 2nd edition, Cambridge University Press, Cambridge U.K. (1992).zbMATHGoogle Scholar
  30. [30]
    T. Voronov, Geometric integration theory on supermanifolds, Sov. Sci. Rev. C. Math. Phys. 9 (1992) 1.Google Scholar
  31. [31]
    A. Rogers, Supermanifolds: theory and applications, World Scientific (2007).Google Scholar
  32. [32]
    F.A. Berezin, The method of second quantisation, Academic, New York U.S.A. (1966).Google Scholar
  33. [33]
    F.A. Berezin and D.A. Leîtes, Supermanifolds, Sov. Math. Dokl. 16 (1975) 1218.zbMATHGoogle Scholar
  34. [34]
    I.N. Bernstein and D.A. Leîtes, Integral forms and Stokes’ formula on supermanifolds, Func. Anal. Appl. 11 (1977) 45.zbMATHCrossRefGoogle Scholar
  35. [35]
    I.N. Bernstein and D.A. Leîtes, How to integrate differential forms on supermanifolds, Func. Anal. Appl. 11 (1977) 219.CrossRefGoogle Scholar
  36. [36]
    F.A. Berezin, Differential forms on supermanifolds, Sov. J. Nucl. Phys. 30 (1979) 605.zbMATHMathSciNetGoogle Scholar
  37. [37]
    A. Rogers, Consistent superspace integration, J. Math. Phys. 26 (1985) 385 [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  38. [38]
    M. Rothstein, Integration on noncompact supermanifolds, Trans. Americ. Maths. Soc. 299 (1987) 387.zbMATHCrossRefMathSciNetGoogle Scholar
  39. [39]
    A. Recknagel, D. Roggenkamp and V. Schomerus, On relevant boundary perturbations of unitary minimal models, Nucl. Phys. B 588 (2000) 552 [hep-th/0003110] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  40. [40]
    A. Recknagel and V. Schomerus, D-branes in Gepner models, Nucl. Phys. B 531 (1998) 185 [hep-th/9712186] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  41. [41]
    I. Brunner, M.R. Douglas, A.E. Lawrence and C. Romelsberger, D-branes on the quintic, JHEP 08 (2000) 015 [hep-th/9906200] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  42. [42]
    I. Brunner and M.R. Gaberdiel, Matrix factorisations and permutation branes, JHEP 07 (2005) 012 [hep-th/0503207] [SPIRES].CrossRefMathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikETH ZürichZürichSwitzerland

Personalised recommendations