Advertisement

Journal of High Energy Physics

, 2010:40 | Cite as

Direct photon production with effective field theory

Article

The production of hard photons in hadronic collisions is studied using Soft-Collinear Effective Theory (SCET). This is the first application of SCET to a physical, observable cross section involving energetic partons in more than two directions. A factorization formula is derived which involves a non-trivial interplay of the angular dependence in the hard and soft functions, both quark and gluon jet functions, and multiple partonic channels. The relevant hard, jet and soft functions are computed to one loop and their anomalous dimensions are determined to three loops. The final resummed inclusive direct photon distribution is valid to next-to-next-to-leading logarithmic order (NNLL), one order beyond previous work. The result is improved by including non-logarithmic terms and photon isolation cuts through matching, and compared to Tevatron data and to fixed order results at the Tevatron and the LHC. The resummed cross section has a significantly smaller theoretical uncertainty than the next-to-leading fixed-order result, particularly at high transverse momentum.

Keywords

Jets Hadronic Colliders Renormalization Group QCD 

References

  1. [1]
    P. Aurenche, A. Douiri, R. Baier, M. Fontannaz and D. Schiff, Prompt Photon Production at Large p T in QCD Beyond the Leading Order, Phys. Lett. B 140 (1984) 87 [SPIRES].ADSGoogle Scholar
  2. [2]
    P. Aurenche, R. Baier, M. Fontannaz and D. Schiff, Prompt Photon Production at Large p T Scheme Invariant QCD Predictions and Comparison with Experiment, Nucl. Phys. B 297 (1988) 661 [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    L.E. Gordon and W. Vogelsang, Polarized and unpolarized prompt photon production beyond the leading order, Phys. Rev. D 48 (1993) 3136 [SPIRES].ADSGoogle Scholar
  4. [4]
    S. Catani, M. Fontannaz, J.P. Guillet and E. Pilon, Cross-section of isolated prompt photons in hadron hadron collisions, JHEP 05 (2002) 028 [hep-ph/0204023] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    E. Laenen, G. Oderda and G. Sterman, Resummation of threshold corrections for single particle inclusive cross-sections, Phys. Lett. B 438 (1998) 173 [hep-ph/9806467] [SPIRES].ADSGoogle Scholar
  6. [6]
    D. Appell, G. Sterman and P.B. Mackenzie, Soft gluons and the normalization of the Drell-Yan cross-section, Nucl. Phys. B 309 (1988) 259 [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    S. Catani, M.L. Mangano and P. Nason, Sudakov resummation for prompt photon production in hadron collisions, JHEP 07 (1998) 024 [hep-ph/9806484] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    S. Catani, M.L. Mangano, P. Nason, C. Oleari and W. Vogelsang, Sudakov resummation effects in prompt photon hadroproduction, JHEP 03 (1999) 025 [hep-ph/9903436] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    N. Kidonakis and J.F. Owens, Soft-gluon resummation and NNLO corrections for direct photon production, Phys. Rev. D 61 (2000) 094004 [hep-ph/9912388] [SPIRES].ADSGoogle Scholar
  10. [10]
    N. Kidonakis and J.F. Owens, Next-to-next-to-leading-order soft-gluon corrections in direct photon production, Int. J. Mod. Phys. A 19 (2004) 149 [hep-ph/0307352] [SPIRES].ADSGoogle Scholar
  11. [11]
    C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [SPIRES].ADSGoogle Scholar
  12. [12]
    C.W. Bauer, D. Pirjol and I.W. Stewart, Soft-Collinear Factorization in Effective Field Theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [SPIRES].ADSGoogle Scholar
  13. [13]
    M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft-collinear effective theory and heavy-to-light currents beyond leading power, Nucl. Phys. B 643 (2002) 431 [hep-ph/0206152] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev. D 66 (2002) 014017 [hep-ph/0202088] [SPIRES].ADSGoogle Scholar
  15. [15]
    A.V. Manohar, Deep inelastic scattering as x1 using soft-collinear effective theory, Phys. Rev. D 68 (2003) 114019 [hep-ph/0309176] [SPIRES].ADSGoogle Scholar
  16. [16]
    T. Becher and M. Neubert, Threshold resummation in momentum space from effective field theory, Phys. Rev. Lett. 97 (2006) 082001 [hep-ph/0605050] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    T. Becher, M. Neubert and B.D. Pecjak, Factorization and momentum-space resummation in deep- inelastic scattering, JHEP 01 (2007) 076 [hep-ph/0607228] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    P.-y. Chen, A. Idilbi and X.-d. Ji, QCD factorization for deep-inelastic scattering at large Bjorken x B ≈ 1 − OQCD/Q), Nucl. Phys. B 763 (2007) 183 [hep-ph/0607003] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    A. Idilbi and X.-d. Ji, Threshold resummation for Drell-Yan process in soft- collinear effective theory, Phys. Rev. D 72 (2005) 054016 [hep-ph/0501006] [SPIRES].ADSGoogle Scholar
  20. [20]
    T. Becher, M. Neubert and G. Xu, Dynamical Threshold Enhancement and Resummation in Drell-Yan Production, JHEP 07 (2008) 030 [arXiv:0710.0680] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    A. Idilbi, X.-d. Ji, J.-P. Ma and F. Yuan, Threshold resummation for Higgs production in effective field theory, Phys. Rev. D 73 (2006) 077501 [hep-ph/0509294] [SPIRES].ADSGoogle Scholar
  22. [22]
    V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Origin of the Large Perturbative Corrections to Higgs Production at Hadron Colliders, Phys. Rev. D 79 (2009) 033013 [arXiv:0808.3008] [SPIRES].ADSGoogle Scholar
  23. [23]
    V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Renormalization-Group Improved Prediction for Higgs Production at Hadron Colliders, Eur. Phys. J. C 62 (2009) 333 [arXiv:0809.4283] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    C. Lee and G. Sterman, Momentum flow correlations from event shapes: Factorized soft gluons and soft-collinear effective theory, Phys. Rev. D 75 (2007) 014022 [hep-ph/0611061] [SPIRES].ADSGoogle Scholar
  25. [25]
    S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Jets from massive unstable particles: top-mass determination, Phys. Rev. D 77 (2008) 074010 [hep-ph/0703207] [SPIRES].ADSGoogle Scholar
  26. [26]
    M.D. Schwartz, Resummation and NLO Matching of Event Shapes with Effective Field Theory, Phys. Rev. D 77 (2008) 014026 [arXiv:0709.2709] [SPIRES].ADSGoogle Scholar
  27. [27]
    C.W. Bauer, S.P. Fleming, C. Lee and G. Sterman, Factorization of e + e Event Shape Distributions with Hadronic Final States in Soft Collinear Effective Theory, Phys. Rev. D 78 (2008) 034027 [arXiv:0801.4569] [SPIRES].ADSGoogle Scholar
  28. [28]
    T. Becher and M.D. Schwartz, A Precise determination of αs from LEP thrust data using effective field theory, JHEP 07 (2008) 034 [arXiv:0803.0342] [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    A. Hornig, C. Lee and G. Ovanesyan, Effective Predictions of Event Shapes: Factorized, Resummed and Gapped Angularity Distributions, JHEP 05 (2009) 122 [arXiv:0901.3780] [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    J.-y. Chiu, F. Golf, R. Kelley and A.V. Manohar, Electroweak Corrections in High Energy Processes using Effective Field Theory, Phys. Rev. D 77 (2008) 053004 [arXiv:0712.0396] [SPIRES].ADSGoogle Scholar
  31. [31]
    J.-y. Chiu, R. Kelley and A.V. Manohar, Electroweak Corrections using Effective Field Theory: Applications to the LHC, Phys. Rev. D 78 (2008) 073006 [arXiv:0806.1240] [SPIRES].ADSGoogle Scholar
  32. [32]
    J.-y. Chiu, A. Fuhrer, R. Kelley and A.V. Manohar, Factorization Structure of Gauge Theory Amplitudes and Application to Hard Scattering Processes at the LHC, Phys. Rev. D 80 (2009) 094013 [arXiv:0909.0012] [SPIRES].Google Scholar
  33. [33]
    D.E. Kaplan and M.D. Schwartz, Constraining Light Colored Particles with Event Shapes, Phys. Rev. Lett. 101 (2008) 022002 [arXiv:0804.2477] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    C.W. Bauer and M.D. Schwartz, Improving jet distributions with effective field theory, Phys. Rev. Lett. 97 (2006) 142001 [hep-ph/0604065] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    C.W. Bauer, A. Hornig and F.J. Tackmann, Factorization for generic jet production, Phys. Rev. D 79 (2009) 114013 [arXiv:0808.2191] [SPIRES].ADSGoogle Scholar
  36. [36]
    T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett. 102 (2009) 162001 [arXiv:0901.0722] [SPIRES].CrossRefADSGoogle Scholar
  37. [37]
    T. Becher and M. Neubert, On the structure of infrared singularities of gauge-theory amplitudes, JHEP 06 (2009) 081 [arXiv:0903.1126] [SPIRES].CrossRefADSGoogle Scholar
  38. [38]
    T. Becher and M. Neubert, Infrared singularities of QCD amplitudes with massive partons, Phys. Rev. D 79 (2009) 125004 [arXiv:0904.1021] [SPIRES].ADSGoogle Scholar
  39. [39]
    R.J. Hill and M. Neubert, Spectator interactions in soft-collinear effective theory, Nucl. Phys. B 657 (2003) 229 [hep-ph/0211018] [SPIRES].CrossRefADSGoogle Scholar
  40. [40]
    S. Fleming and A.K. Leibovich, The resummed photon spectrum in radiative Υ decays, Phys. Rev. Lett. 90 (2003) 032001 [hep-ph/0211303] [SPIRES].CrossRefADSGoogle Scholar
  41. [41]
    S. Fleming and A.K. Leibovich, The photon spectrum in Υ decays, Phys. Rev. D 67 (2003) 074035 [hep-ph/0212094] [SPIRES].ADSGoogle Scholar
  42. [42]
    S. Fleming, A.K. Leibovich and T. Mehen, Resumming the color octet contribution to e + e J/ψ + X, Phys. Rev. D 68 (2003) 094011 [hep-ph/0306139] [SPIRES].ADSGoogle Scholar
  43. [43]
    P.B. Arnold and M.H. Reno, The Complete Computation of High p T W and Z Production in 2nd Order QCD, Nucl. Phys. B 319 (1989) 37 [Erratum ibid. B 330 (1990) 284] [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Two-loop divergences of scattering amplitudes with massive partons, Phys. Rev. Lett. 103 (2009) 201601 [arXiv:0907.4791] [SPIRES].CrossRefGoogle Scholar
  45. [45]
    A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Two-loop divergences of massive scattering amplitudes in non-abelian gauge theories, JHEP 11 (2009) 062 [arXiv:0908.3676] [SPIRES].CrossRefGoogle Scholar
  46. [46]
    S. Catani, The singular behaviour of QCD amplitudes at two-loop order, Phys. Lett. B 427 (1998) 161 [hep-ph/9802439] [SPIRES].ADSGoogle Scholar
  47. [47]
    G. Sterman and M.E. Tejeda-Yeomans, Multi-loop amplitudes and resummation, Phys. Lett. B 552 (2003) 48 [hep-ph/0210130] [SPIRES].ADSGoogle Scholar
  48. [48]
    S.M. Aybat, L.J. Dixon and G. Sterman, The two-loop anomalous dimension matrix for soft gluon exchange, Phys. Rev. Lett. 97 (2006) 072001 [hep-ph/0606254] [SPIRES].CrossRefADSGoogle Scholar
  49. [49]
    S.M. Aybat, L.J. Dixon and G. Sterman, The two-loop soft anomalous dimension matrix and resummation at next-to-next-to leading pole, Phys. Rev. D 74 (2006) 074004 [hep-ph/0607309] [SPIRES].ADSGoogle Scholar
  50. [50]
    E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes, JHEP 03 (2009) 079 [arXiv:0901.1091] [SPIRES].CrossRefADSGoogle Scholar
  51. [51]
    L.J. Dixon, E. Gardi and L. Magnea, On soft singularities at three loops and beyond, arXiv:0910.3653 [SPIRES].
  52. [52]
    S. Catani and M.H. Seymour, The Dipole Formalism for the Calculation of QCD Jet Cross Sections at Next-to-Leading Order, Phys. Lett. B 378 (1996) 287 [hep-ph/9602277] [SPIRES].ADSGoogle Scholar
  53. [53]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [SPIRES].CrossRefADSGoogle Scholar
  54. [54]
    F. De Fazio and M. Neubert, BX u l \( \overline v \) l decay distributions to order αs, JHEP 06 (1999) 017 [hep-ph/9905351] [SPIRES].CrossRefGoogle Scholar
  55. [55]
    T. Becher and M. Neubert, Toward a NNLO calculation of the \( \overline B \)X s + γ decay rate with a cut on photon energy. II: Two-loop result for the jet function, Phys. Lett. B 637 (2006) 251 [hep-ph/0603140] [SPIRES].ADSGoogle Scholar
  56. [56]
    C.W. Bauer, C.-W. Chiang, S. Fleming, A.K. Leibovich and I. Low, Resumming the color-octet contribution to radiative Υ decay, Phys. Rev. D 64 (2001) 114014 [hep-ph/0106316] [SPIRES].ADSGoogle Scholar
  57. [57]
    C.W. Bauer and M.D. Schwartz, Event generation from effective field theory, Phys. Rev. D 76 (2007) 074004 [hep-ph/0607296] [SPIRES].ADSGoogle Scholar
  58. [58]
    M. Beneke and V.M. Braun, Power corrections and renormalons in Drell-Yan production, Nucl. Phys. B 454 (1995) 253 [hep-ph/9506452] [SPIRES].CrossRefADSGoogle Scholar
  59. [59]
    S. Catani, M.L. Mangano, P. Nason and L. Trentadue, The Resummation of Soft Gluon in Hadronic Collisions, Nucl. Phys. B 478 (1996) 273 [hep-ph/9604351] [SPIRES].CrossRefADSGoogle Scholar
  60. [60]
    D0 collaboration, V.M. Abazov et al., Measurement of the isolated photon cross section in \( p\overline p \) collisions at √s = 1.96 TeV, Phys. Lett. B 639 (2006) 151 [Erratum ibid. B 658 (2008) 285] [hep-ex/0511054] [SPIRES].ADSGoogle Scholar
  61. [61]
    C. Deluca Silberberg, Measurement of the inclusive isolated prompt photon production cross section at the Tevatron using the CDF detector, FERMILAB-THESIS-2009-18, Apr 2009.Google Scholar
  62. [62]
    CDF collaboration, T. Aaltonen et al., Measurement of the Inclusive Isolated Prompt Photon Cross Section in ppbar Collisions at √s = 1.96 TeV using the CDF Detector, Phys. Rev. D 80 (2009) 111106 [arXiv:0910.3623] [SPIRES].Google Scholar
  63. [63]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [SPIRES].CrossRefGoogle Scholar
  64. [64]
    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Factorization at the LHC: From PDFs to Initial State Jets, arXiv:0910.0467 [SPIRES].
  65. [65]
    T. van Ritbergen, J.A.M. Vermaseren and S.A. Larin, The four-loop β-function in quantum chromodynamics, Phys. Lett. B 400 (1997) 379 [hep-ph/9701390] [SPIRES].ADSGoogle Scholar
  66. [66]
    M. Czakon, The four-loop QCD β-function and anomalous dimensions, Nucl. Phys. B 710 (2005) 485 [hep-ph/0411261] [SPIRES].CrossRefADSGoogle Scholar
  67. [67]
    S. Moch, J.A.M. Vermaseren and A. Vogt, The three-loop splitting functions in QCD: The non-singlet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  68. [68]
    A. Vogt, S. Moch and J.A.M. Vermaseren, The three-loop splitting functions in QCD: The singlet case, Nucl. Phys. B 691 (2004) 129 [hep-ph/0404111] [SPIRES].CrossRefMathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUniversity of BernBernSwitzerland
  2. 2.Department of PhysicsHarvard UniversityCambridgeU.S.A.

Personalised recommendations