Journal of High Energy Physics

, 2010:34 | Cite as

Phases of one dimensional large N gauge theory in a 1/D expansion

Article

Abstract

We consider large N Yang Mills theory with D adjoint scalar fields in d dimensions for d = 0 or 1. We show the existence of a non-trivial saddle point of the functional integral at large D which is characterized by a mass gap for the adjoint scalars. We integrate out the adjoint scalars in a 1/D expansion around the saddle point. In case of one dimension which is regarded as a circle, this procedure leads to an effective action for the Wilson line. We find an analogue of the confinement/deconfinement transition which consists of a second order phase transition from a uniform to a non-uniform eigenvalue distribution of the Wilson line, closely followed by a Gross-Witten-Wadia transition where a gap develops in the eigenvalue distribution. The phase transition can be regarded as a continuation of a Gregory-Laflamme transition. Our methods involve large values of the dimensionless ’tHooft coupling. The analysis in this paper is quantitatively supported by earlier numerical work for D = 9.

Keywords

M(atrix) Theories 1/N Expansion Confinement Gauge-gravity correspondence 

References

  1. [1]
    E. Brezin and S. R. Wadia, The Large N expansion in quantum field theory and statistical physics: From spin systems to two-dimensional gravity, World Scientific, Singapore (1993), pg. 1130 [SPIRES].Google Scholar
  2. [2]
    T. Eguchi and H. Kawai, Reduction of Dynamical Degrees of Freedom in the Large-N Gauge Theory, Phys. Rev. Lett. 48 (1982) 1063 [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    W. Krauth and M. Staudacher, Eigenvalue distributions in Yang-Mills integrals, Phys. Lett. B 453 (1999) 253 [hep-th/9902113] [SPIRES].MathSciNetADSGoogle Scholar
  4. [4]
    T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: A conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [SPIRES].MathSciNetADSGoogle Scholar
  5. [5]
    N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, A large-N reduced model as superstring, Nucl. Phys. B 498 (1997) 467 [hep-th/9612115] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    T. Hotta, J. Nishimura and A. Tsuchiya, Dynamical aspects of large-N reduced models, Nucl. Phys. B 545 (1999) 543 [hep-th/9811220] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity and the large-N limit of theories with sixteen supercharges, Phys. Rev. D 58 (1998) 046004 [hep-th/9802042] [SPIRES].MathSciNetADSGoogle Scholar
  8. [8]
    D.N. Kabat, G. Lifschytz and D.A. Lowe, Black hole thermodynamics from calculations in strongly coupled gauge theory, Int. J. Mod. Phys. A 16 (2001) 856 [Phys. Rev. Lett. 86 (2001) 1426] [hep-th/0007051] [SPIRES].MathSciNetADSGoogle Scholar
  9. [9]
    D.N. Kabat, G. Lifschytz and D.A. Lowe, Black hole entropy from non-perturbative gauge theory, Phys. Rev. D 64 (2001) 124015 [hep-th/0105171] [SPIRES].MathSciNetADSGoogle Scholar
  10. [10]
    K.N. Anagnostopoulos, M. Hanada, J. Nishimura and S. Takeuchi, Monte Carlo studies of supersymmetric matrix quantum mechanics with sixteen supercharges at finite temperature, Phys. Rev. Lett. 100 (2008) 021601 [arXiv:0707.4454] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    M. Hanada, A. Miwa, J. Nishimura and S. Takeuchi, Schwarzschild radius from Monte Carlo calculation of the Wilson loop in supersymmetric matrix quantum mechanics, Phys. Rev. Lett. 102 (2009) 181602 [arXiv:0811.2081] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    M. Hanada, Y. Hyakutake, J. Nishimura and S. Takeuchi, Higher derivative corrections to black hole thermodynamics from supersymmetric matrix quantum mechanics, Phys. Rev. Lett. 102 (2009) 191602 [arXiv:0811.3102] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    S. Catterall and T. Wiseman, Black hole thermodynamics from simulations of lattice Yang-Mills theory, Phys. Rev. D 78 (2008) 041502 [arXiv:0803.4273] [SPIRES].MathSciNetADSGoogle Scholar
  14. [14]
    T. Azeyanagi, M. Hanada, H. Kawai and Y. Matsuo, Worldsheet Analysis of Gauge/Gravity Dualities, Nucl. Phys. B 816 (2009) 278 [arXiv:0812.1453] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    B. Sundborg, The Hagedorn Transition, Deconfinement and N = 4 SYM Theory, Nucl. Phys. B 573 (2000) 349 [hep-th/9908001] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk, The Hagedorn/deconfinement phase transition in weakly coupled large-N gauge theories, Adv. Theor. Math. Phys. 8 (2004) 603 [hep-th/0310285] [SPIRES].MATHMathSciNetGoogle Scholar
  17. [17]
    L. Álvarez-Gaumé, C. Gomez, H. Liu and S. Wadia, Finite temperature effective action, AdS 5 black holes and 1/N expansion, Phys. Rev. D 71 (2005) 124023 [hep-th/0502227] [SPIRES].ADSGoogle Scholar
  18. [18]
    L. Álvarez-Gaumé, P. Basu, M. Mariño and S.R. Wadia, Blackhole/string transition for the small Schwarzschild blackhole of AdS 5 × S 5 and critical unitary matrix models, Eur. Phys. J. C 48 (2006) 647 [hep-th/0605041] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N = 4 super Yang-Mills, JHEP 04 (2002) 013 [hep-th/0202021] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    I.R. Klebanov, J.M. Maldacena and N. Seiberg, D-brane decay in two-dimensional string theory, JHEP 07 (2003) 045 [hep-th/0305159] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    J. McGreevy and H.L. Verlinde, Strings from tachyons: The c = 1 matrix reloaded, JHEP 12 (2003) 054 [hep-th/0304224] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    O. Aharony, J. Marsano, S. Minwalla and T. Wiseman, Black hole-black string phase transitions in thermal 1+1-dimensional supersymmetric Yang-Mills theory on a circle, Class. Quant. Grav. 21 (2004) 5169 [hep-th/0406210] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  23. [23]
    O. Aharony et al., The phase structure of low dimensional large-N gauge theories on tori, JHEP 01 (2006) 140 [hep-th/0508077] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  24. [24]
    N. Kawahara, J. Nishimura and S. Takeuchi, Phase structure of matrix quantum mechanics at finite temperature, JHEP 10 (2007) 097 [arXiv:0706.3517] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    T. Azeyanagi, M. Hanada, T. Hirata and H. Shimada, On the shape of a D-brane bound state and its topology change, JHEP 03 (2009) 121 [arXiv:0901.4073] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    D.J. Gross and E. Witten, Possible Third Order Phase Transition in the Large-N Lattice Gauge Theory, Phys. Rev. D 21 (1980) 446 [SPIRES].ADSGoogle Scholar
  27. [27]
    S.R. Wadia, N = infinity phase transition in a class of exactly soluble model lattice gauge theories, Phys. Lett. B 93 (1980) 403 [SPIRES].MathSciNetADSGoogle Scholar
  28. [28]
    S. Wadia, A Study Of U(N) Lattice Gauge Theory In Two-Dimensions, preprint EFI-79/44-CHICAGO [SPIRES].
  29. [29]
    J.M. Drouffe and J.B. Zuber, Strong Coupling And Mean Field Methods In Lattice Gauge Theories, Phys. Rept. 102 (1983) 1 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    G. Mandal, M. Mahato, T. Morita and S.R. Wadia, in progress.Google Scholar
  31. [31]
    A. Jevicki and B. Sakita, The quantum collective field method and its application to the planar limit, Nucl. Phys. B 165 (1980) 511 [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    J. Jurkiewicz and K. Zalewski, Vacuum structure of the U(Ninfinity) gauge theory on a two-dimensional lattice for a broad class of variant actions, Nucl. Phys. B 220 (1983) 167 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  33. [33]
    G. Mandal, Phase structure of unitary matrix models, Mod. Phys. Lett. A 5 (1990) 1147 [SPIRES].MathSciNetADSGoogle Scholar
  34. [34]
    R. Gregory and R. Laflamme, Black strings and p-branes are unstable, Phys. Rev. Lett. 70 (1993) 2837 [hep-th/9301052] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  35. [35]
    B. Kol, The Phase Transition between Caged Black Holes and Black Strings. A Review, Phys. Rept. 422 (2006) 119 [hep-th/0411240] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  36. [36]
    W. Taylor, D-brane field theory on compact spaces, Phys. Lett. B 394 (1997) 283 [hep-th/9611042] [SPIRES].ADSGoogle Scholar
  37. [37]
    L. Susskind, Matrix theory black holes and the Gross Witten transition, hep-th/9805115 [SPIRES].
  38. [38]
    R. Slansky, Group Theory for Unified Model Building, Phys. Rept. 79 (1981) 1 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  39. [39]
    S. Moriguchi, K. Udagawa and S. Hitotsumatsu, Sugaku Koushiki II (in Japanese), Iwanami, Tokyo (2001).Google Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Gautam Mandal
    • 1
  • Manavendra Mahato
    • 1
  • Takeshi Morita
    • 1
  1. 1.Department of Theoretical PhysicsTata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations