Advertisement

Journal of High Energy Physics

, 2010:32 | Cite as

The lift of type IIA supergravity with D6 sources: M-theory with torsion

  • Jérôme Gaillard
  • Johannes Schmude
Article

Abstract

This paper is concerned with an extension of the well known Kaluza-Klein mechanism. As the standard ansatz for Kaluza-Klein reduction implies the existence of a gauge potential associated with the KK field strength, it follows immediately that this field strength satisfies its Bianchi identity. Hence, the standard KK formalism breaks down in the presence of a violated Bianchi identity. This occurs for example in the context of D6 sources.

We will investigate and partially solve this problem in the context of the type IIA/M-theory duality. Our discussion is motivated by the construction of gauge/string duals with backreacting flavor branes using D6-branes, which appear in M-theory as KK-monopoles.

We are able to derive source-modified equations of motion for the eleven-dimensional theory, and are subsequently able to obtain the source-modified type IIA equations by direct dimensional reduction.

Keywords

Gauge-gravity correspondence D-branes Differential and Algebraic Geometry M-Theory 

References

  1. [1]
    E. Kiritsis, String theory in a nutshell, Princeton University Press, Princeton U.S.A. (2007), p. 588 [SPIRES].zbMATHGoogle Scholar
  2. [2]
    K. Becker, M. Becker and J.H. Schwarz, String theory and M-theory: A modern introduction, Cambridge University Press, Cambridge U.K. (2007), p. 739 [SPIRES].zbMATHGoogle Scholar
  3. [3]
    T. Ortin, Gravity and strings, Cambridge University Press, Cambridge U.K. (2004) [SPIRES].zbMATHGoogle Scholar
  4. [4]
    C.V. Johnson, D-branes, Cambridge University Press, Cambridge U.K. (2003), p. 548 [SPIRES].zbMATHGoogle Scholar
  5. [5]
    S.S. Gubser, Special holonomy in string theory and M-theory, hep-th/0201114 [SPIRES].
  6. [6]
    F. Quevedo and C.A. Trugenberger, Phases of antisymmetric tensor field theories, Nucl. Phys. B 501 (1997) 143 [hep-th/9604196] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].zbMATHMathSciNetADSGoogle Scholar
  8. [8]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].zbMATHMathSciNetGoogle Scholar
  9. [9]
    A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    F. Bigazzi, R. Casero, A.L. Cotrone, E. Kiritsis and A. Paredes, Non-critical holography and four-dimensional CFT’s with fundamentals, JHEP 10 (2005) 012 [hep-th/0505140] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    R. Casero, C. Núñez and A. Paredes, Towards the string dual of N = 1 SQCD-like theories, Phys. Rev. D 73 (2006) 086005 [hep-th/0602027] [SPIRES].ADSGoogle Scholar
  12. [12]
    R. Casero, C. Núñez and A. Paredes, Elaborations on the string dual to N = 1 SQCD, Phys. Rev. D 77 (2008) 046003 [arXiv:0709.3421] [SPIRES].ADSGoogle Scholar
  13. [13]
    C. Hoyos-Badajoz, C. Núñez and I. Papadimitriou, Comments on the string dual to N = 1 SQCD, Phys. Rev. D 78 (2008) 086005 [arXiv:0807.3039] [SPIRES].ADSGoogle Scholar
  14. [14]
    F. Benini, F. Canoura, S. Cremonesi, C. Núñez and A.V. Ramallo, Unquenched flavors in the Klebanov-Witten model, JHEP 02 (2007) 090 [hep-th/0612118] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    E. Caceres, R. Flauger, M. Ihl and T. Wrase, New supergravity backgrounds dual to N = 1 SQCD-like theories with N f = 2N c, JHEP 03 (2008) 020 [arXiv:0711.4878] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    F. Benini, F. Canoura, S. Cremonesi, C. Núñez and A.V. Ramallo, Backreacting flavors in the Klebanov-Strassler background, JHEP 09 (2007) 109 [arXiv:0706.1238] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    R. Casero and A. Paredes, A note on the string dual of N = 1 SQCD-like theories, Fortsch. Phys. 55 (2007) 678 [hep-th/0701059] [SPIRES].zbMATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    F. Benini, A chiral cascade via backreacting D7-branes with flux, JHEP 10 (2008) 051 [arXiv:0710.0374] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    F. Bigazzi, A.L. Cotrone and A. Paredes, Klebanov-Witten theory with massive dynamical flavors, JHEP 09 (2008) 048 [arXiv:0807.0298] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    F. Canoura, P. Merlatti and A.V. Ramallo, The supergravity dual of 3d supersymmetric gauge theories with unquenched flavors, JHEP 05 (2008) 011 [arXiv:0803.1475] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    D. Arean, P. Merlatti, C. Núñez and A.V. Ramallo, String duals of two-dimensional (4, 4) supersymmetric gauge theories, JHEP 12 (2008) 054 [arXiv:0810.1053] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    A. Paredes, On unquenched N = 2 holographic flavor, JHEP 12 (2006) 032 [hep-th/0610270] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    D.-f. Zeng, Extending BCCNR flavored geometry to the negative coupling constant region, arXiv:0708.3814 [SPIRES].
  24. [24]
    F. Bigazzi, A.L. Cotrone, C. Núñez and A. Paredes, Heavy quark potential with dynamical flavors: a first order transition, Phys. Rev. D 78 (2008) 114012 [arXiv:0806.1741] [SPIRES].ADSGoogle Scholar
  25. [25]
    F. Bigazzi, A.L. Cotrone, A. Paredes and A. Ramallo, Non chiral dynamical flavors and screening on the conifold, Fortsch. Phys. 57 (2009) 514 [arXiv:0810.5220] [SPIRES].zbMATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    F. Bigazzi, A.L. Cotrone, A. Paredes and A.V. Ramallo, The Klebanov-Strassler model with massive dynamical flavors, JHEP 03 (2009) 153 [arXiv:0812.3399] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  27. [27]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [SPIRES].zbMATHMathSciNetGoogle Scholar
  28. [28]
    J.M. Maldacena and C. Núñez, Towards the large-N limit of pure N = 1 super Yang-Mills, Phys. Rev. Lett. 86 (2001) 588 [hep-th/0008001] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  29. [29]
    J. Gomis and J.G. Russo, D = 2+1 N = 2 Yang-Mills theory from wrapped branes, JHEP 10 (2001) 028 [hep-th/0109177] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    J.P. Gauntlett, N. Kim, D. Martelli and D. Waldram, Wrapped fivebranes and N = 2 super Yang-Mills theory, Phys. Rev. D 64 (2001) 106008 [hep-th/0106117] [SPIRES].MathSciNetADSGoogle Scholar
  31. [31]
    F. Bigazzi, A.L. Cotrone and A. Zaffaroni, N = 2 gauge theories from wrapped five-branes, Phys. Lett. B 519 (2001) 269 [hep-th/0106160] [SPIRES].MathSciNetADSGoogle Scholar
  32. [32]
    M. Atiyah, J.M. Maldacena and C. Vafa, An M-theory flop as a large-N duality, J. Math. Phys. 42 (2001) 3209 [hep-th/0011256] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  33. [33]
    J.D. Edelstein and C. Núñez, D6 branes and M-theory geometrical transitions from gauged supergravity, JHEP 04 (2001) 028 [hep-th/0103167] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    R. Gopakumar and C. Vafa, On the gauge theory/geometry correspondence, Adv. Theor. Math. Phys. 3 (1999) 1415 [hep-th/9811131] [SPIRES].zbMATHMathSciNetGoogle Scholar
  35. [35]
    C. Vafa, Superstrings and topological strings at large-N, J. Math. Phys. 42 (2001) 2798 [hep-th/0008142] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  36. [36]
    J. Schmude, The quark-gluon plasma and D6-branes on the conifold, Nucl. Phys. B 817 (2009) 117 [arXiv:0711.3763] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  37. [37]
    M. Atiyah and E. Witten, M-theory dynamics on a manifold of G 2 holonomy, Adv. Theor. Math. Phys. 6 (2003) 1 [hep-th/0107177] [SPIRES].MathSciNetGoogle Scholar
  38. [38]
    J. Gutowski, G. Papadopoulos and P.K. Townsend, Supersymmetry and generalized calibrations, Phys. Rev. D 60 (1999) 106006 [hep-th/9905156] [SPIRES].MathSciNetADSGoogle Scholar
  39. [39]
    P. Koerber, Stable D-branes, calibrations and generalized Calabi-Yau geometry, JHEP 08 (2005) 099 [hep-th/0506154] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  40. [40]
    P. Koerber and L. Martucci, Deformations of calibrated D-branes in flux generalized complex manifolds, JHEP 12 (2006) 062 [hep-th/0610044] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  41. [41]
    J. Gaillard and J. Schmude, On the geometry of string duals with backreacting flavors, JHEP 01 (2009) 079 [arXiv:0811.3646] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  42. [42]
    J.P. Gauntlett, D. Martelli and D. Waldram, Superstrings with intrinsic torsion, Phys. Rev. D 69 (2004) 086002 [hep-th/0302158] [SPIRES].MathSciNetADSGoogle Scholar
  43. [43]
    A. Brandhuber, G 2 holonomy spaces from invariant three-forms, Nucl. Phys. B 629 (2002) 393 [hep-th/0112113] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  44. [44]
    A. Brandhuber, J. Gomis, S.S. Gubser and S. Gukov, Gauge theory at large-N and new G 2 holonomy metrics, Nucl. Phys. B 611 (2001) 179 [hep-th/0106034] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  45. [45]
    M. Cvetič, G.W. Gibbons, H. Lü and C.N. Pope, A G 2 unification of the deformed and resolved conifolds, Phys. Lett. B 534 (2002) 172 [hep-th/0112138] [SPIRES].ADSGoogle Scholar
  46. [46]
    R. Bryand and S. Salamon, On the construction of some complete metrices with expectional holonomy, Duke Math. J. 58 (1989) 829 [SPIRES].CrossRefMathSciNetGoogle Scholar
  47. [47]
    P. Kaste, R. Minasian, M. Petrini and A. Tomasiello, Kaluza-Klein bundles and manifolds of exceptional holonomy, JHEP 09 (2002) 033 [hep-th/0206213] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  48. [48]
    D. Lüst and D. Tsimpis, Supersymmetric AdS 4 compactifications of IIA supergravity, JHEP 02 (2005) 027 [hep-th/0412250] [SPIRES].CrossRefGoogle Scholar
  49. [49]
    P. Koerber and D. Tsimpis, Supersymmetric sources, integrability and generalized- structure compactifications, JHEP 08 (2007) 082 [arXiv:0706.1244] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  50. [50]
    K. Peeters, Introducing Cadabra: a symbolic computer algebra system for field theory problems, hep-th/0701238 [SPIRES].
  51. [51]
    A. Strominger, Superstrings with torsion, Nucl. Phys. B 274 (1986) 253 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  52. [52]
    E. Bergshoeff, B. Janssen and T. Ortín, Kaluza-Klein monopoles and gauged σ-models, Phys. Lett. B 410 (1997) 131 [hep-th/9706117] [SPIRES].ADSGoogle Scholar
  53. [53]
    A. Paredes, Supersymmetric solutions of supergravity from wrapped branes, hep-th/0407013 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Department of PhysicsSwansea UniversitySwanseaU.K.

Personalised recommendations