Journal of High Energy Physics

, 2010:17 | Cite as

What is a chiral 2d CFT? And what does it have to do with extremal black holes?

  • Vijay Balasubramanian
  • Jan de Boer
  • M.M. Sheikh-Jabbari
  • Joan Simón
Open Access
Article

Abstract

The near horizon limit of the extremal BTZ black hole is a “self-dual orbifold” of AdS3. This geometry has a null circle on its boundary, and thus the dual field theory is a Discrete Light Cone Quantized (DLCQ) two dimensional CFT. The same geometry can be compactified to two dimensions giving AdS2 with a constant electric field. The kinematics of the DLCQ show that in a consistent quantum theory of gravity in these backgrounds there can be no dynamics in AdS2, which is consistent with older ideas about instabilities in this space. We show how the necessary boundary conditions eliminating AdS2 fluctuations can be implemented, leaving one copy of a Virasoro algebra as the asymptotic symmetry group. Our considerations clarify some aspects of the chiral CFTs appearing in proposed dual descriptions of the near-horizon degrees of freedom of extremal black holes.

Keywords

Black Holes in String Theory AdS-CFT Correspondence 

References

  1. [1]
    H.K. Kunduri, J. Lucietti and H.S. Reall, Near-horizon symmetries of extremal black holes, Class. Quant. Grav. 24 (2007) 4169 [arXiv:0705.4214] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  2. [2]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].MATHMathSciNetADSGoogle Scholar
  3. [3]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    M. Spradlin and A. Strominger, Vacuum states for AdS 2 black holes, JHEP 11 (1999) 021 [hep-th/9904143] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    D. Gaiotto et al., D4-D0 Branes on the Quintic, JHEP 03 (2006) 019 [hep-th/0509168] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    D. Gaiotto, A. Strominger and X. Yin, Superconformal black hole quantum mechanics, JHEP 11 (2005) 017 [hep-th/0412322] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    R.K. Gupta and A. Sen, AdS 3 /CFT 2 to AdS 2 /CFT 1, JHEP 04 (2009) 034 [arXiv:0806.0053] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    T. Azeyanagi, T. Nishioka and T. Takayanagi, Near Extremal Black Hole Entropy as Entanglement Entropy via AdS 2/CFT 1, Phys. Rev. D 77 (2008) 064005 [arXiv:0710.2956] [SPIRES].MathSciNetADSGoogle Scholar
  9. [9]
    A. Strominger, AdS 2 quantum gravity and string theory, JHEP 01 (1999) 007 [hep-th/9809027] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    V. Balasubramanian, A. Naqvi and J. Simon, A multi-boundary AdS orbifold and DLCQ holography: A universal holographic description of extremal black hole horizons, JHEP 08 (2004) 023 [hep-th/0311237] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    J.-H. Cho, T. Lee and G.W. Semenoff, Two dimensional anti-de Sitter space and discrete light cone quantization, Phys. Lett. B 468 (1999) 52 [hep-th/9906078] [SPIRES].MathSciNetADSGoogle Scholar
  12. [12]
    O. Coussaert and M. Henneaux, Self-dual solutions of 2+1 Einstein gravity with a negative cosmological constant, hep-th/9407181 [SPIRES].
  13. [13]
    J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  14. [14]
    M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT Correspondence, Phys. Rev. D 80 (2009) 124008 [arXiv:0809.4266] [SPIRES].Google Scholar
  15. [15]
    T. Hartman, K. Murata, T. Nishioka and A. Strominger, CFT Duals for Extreme Black Holes, JHEP 04 (2009) 019 [arXiv:0811.4393] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    J.M. Maldacena, J. Michelson and A. Strominger, Anti-de Sitter fragmentation, JHEP 02 (1999) 011 [hep-th/9812073] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    V. Balasubramanian, J. de Boer, V. Jejjala and J. Simon, Entropy of near-extremal black holes in AdS 5, JHEP 05 (2008) 067 [arXiv:0707.3601] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    R. Fareghbal, C.N. Gowdigere, A.E. Mosaffa and M.M. Sheikh-Jabbari, Nearing Extremal Intersecting Giants and New Decoupled Sectors in N = 4 SYM, JHEP 08 (2008) 070 [arXiv:0801.4457] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    R. Fareghbal, C.N. Gowdigere, A.E. Mosaffa and M.M. Sheikh-Jabbari, Nearing 1 1D Extremal Intersecting Giants and New Decoupled Sectors in D = 3, 6 SCFT’s, arXiv:0805.0203 [SPIRES].
  20. [20]
    A.J. Amsel, G.T. Horowitz, D. Marolf and M.M. Roberts, No Dynamics in the Extremal Kerr Throat, JHEP 09 (2009) 044 [arXiv:0906.2376] [SPIRES].CrossRefGoogle Scholar
  21. [21]
    O.J.C. Dias, H.S. Reall and J.E. Santos, Kerr-CFT and gravitational perturbations, JHEP 08 (2009) 101 [arXiv:0906.2380] [SPIRES].CrossRefGoogle Scholar
  22. [22]
    M. Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  23. [23]
    M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2+1) black hole, Phys. Rev. D 48 (1993) 1506 [gr-qc/9302012] [SPIRES].ADSGoogle Scholar
  24. [24]
    P. Kraus, Lectures on black holes and the AdS 3/CFT 2 correspondence, Lect. Notes Phys. 755 (2008) 193 [hep-th/0609074] [SPIRES].MathSciNetGoogle Scholar
  25. [25]
    J.R. David, G. Mandal and S.R. Wadia, Microscopic formulation of black holes in string theory, Phys. Rept. 369 (2002) 549 [hep-th/0203048] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  26. [26]
    M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2+1) black hole, Phys. Rev. D 48 (1993) 1506 [gr-qc/9302012] [SPIRES].ADSGoogle Scholar
  27. [27]
    S. Carlip, Conformal field theory, (2+1)-dimensional gravity and the BTZ black hole, Class. Quant. Grav. 22 (2005) R85 [gr-qc/0503022] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  28. [28]
    N. Seiberg, Why is the matrix model correct?, Phys. Rev. Lett. 79 (1997) 3577 [hep-th/9710009] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  29. [29]
    A. Strominger and C. Vafa, Microscopic Origin of the Bekenstein-Hawking Entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [SPIRES].MathSciNetADSGoogle Scholar
  30. [30]
    T. Hartman and A. Strominger, Central Charge for AdS 2 Quantum Gravity, JHEP 04 (2009) 026 [arXiv:0803.3621] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    A. Castro, D. Grumiller, F. Larsen and R. McNees, Holographic Description of AdS 2 Black Holes, JHEP 11 (2008) 052 [arXiv:0809.4264] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  32. [32]
    D. Marolf and A. Yarom, Lodged in the throat: Internal infinities and AdS/CFT, JHEP 01 (2006) 141 [hep-th/0511225] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  33. [33]
    B. Pioline and J. Troost, Schwinger pair production in AdS 2, JHEP 03 (2005) 043 [hep-th/0501169] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  34. [34]
    J. Michelson and A. Strominger, Superconformal multi-black hole quantum mechanics, JHEP 09 (1999) 005 [hep-th/9908044] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  35. [35]
    R. Dijkgraaf, R. Gopakumar, H. Ooguri and C. Vafa, Baby universes in string theory, Phys. Rev. D 73 (2006) 066002 [hep-th/0504221] [SPIRES].MathSciNetADSGoogle Scholar
  36. [36]
    J.M. Maldacena, Eternal black holes in Anti-de-Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  37. [37]
    J.M. Bardeen and G.T. Horowitz, The extreme Kerr throat geometry: A vacuum analog of AdS 2 × S 2, Phys. Rev. D 60 (1999) 104030 [hep-th/9905099] [SPIRES].MathSciNetADSGoogle Scholar
  38. [38]
    H. Lü, J. Mei and C.N. Pope, Kerr/CFT Correspondence in Diverse Dimensions, JHEP 04 (2009) 054 [arXiv:0811.2225] [SPIRES].CrossRefGoogle Scholar
  39. [39]
    D.D.K. Chow, M. Cvetič, H. Lü and C.N. Pope, Extremal Black Hole/CFT Correspondence in (Gauged) Supergravities, Phys. Rev. D 79 (2009) 084018 [arXiv:0812.2918] [SPIRES].ADSGoogle Scholar
  40. [40]
    T. Azeyanagi, N. Ogawa and S. Terashima, Holographic Duals of Kaluza-Klein Black Holes, JHEP 04 (2009) 061 [arXiv:0811.4177] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  41. [41]
    H. Isono, T.-S. Tai and W.-Y. Wen, Kerr/CFT correspondence and five-dimensional BMPV black holes, Int. J. Mod. Phys. A 24 (2009) 5659 [arXiv:0812.4440] [SPIRES].Google Scholar
  42. [42]
    C.-M. Chen and J.E. Wang, Holographic Duals of Black Holes in Five-dimensional Minimal Supergravity, arXiv:0901.0538 [SPIRES].
  43. [43]
    F. Loran and H. Soltanpanahi, Near the horizon of 5D black rings, JHEP 03 (2009) 035 [arXiv:0810.2620] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  44. [44]
    F. Loran and H. Soltanpanahi, 5D Extremal Rotating Black Holes and CFT duals, Class. Quant. Grav. 26 (2009) 155019 [arXiv:0901.1595] [SPIRES].CrossRefADSGoogle Scholar
  45. [45]
    H. Lü, J.-w. Mei, C.N. Pope and J.F. Vazquez-Poritz, Extremal Static AdS Black Hole/CFT Correspondence in Gauged Supergravities, Phys. Lett. B 673 (2009) 77 [arXiv:0901.1677] [SPIRES].ADSGoogle Scholar
  46. [46]
    G. Compere, K. Murata and T. Nishioka, Central Charges in Extreme Black Hole/CFT Correspondence, JHEP 05 (2009) 077 [arXiv:0902.1001] [SPIRES].CrossRefADSGoogle Scholar
  47. [47]
    T. Azeyanagi, N. Ogawa and S. Terashima, The Kerr/CFT Correspondence and String Theory, Phys. Rev. D 79 (2009) 106009 [arXiv:0812.4883] [SPIRES].MathSciNetADSGoogle Scholar
  48. [48]
    A.N. Schellekens and N.P. Warner, Anomalies and modular invariance in string theory, Phys. Lett. B 177 (1986) 317 [SPIRES].MathSciNetADSGoogle Scholar
  49. [49]
    E. Witten, Elliptic genera and quantum field theory, Commun. Math. Phys. 109 (1987) 525 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  50. [50]
    J. Maldacena, D. Martelli and Y. Tachikawa, Comments on string theory backgrounds with non- relativistic conformal symmetry, JHEP 10 (2008) 072 [arXiv:0807.1100] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  51. [51]
    K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  52. [52]
    C.P. Herzog, M. Rangamani and S.F. Ross, Heating up Galilean holography, JHEP 11 (2008) 080 [arXiv:0807.1099] [SPIRES].CrossRefMathSciNetADSGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Vijay Balasubramanian
    • 1
  • Jan de Boer
    • 2
  • M.M. Sheikh-Jabbari
    • 3
    • 4
  • Joan Simón
    • 5
    • 6
  1. 1.David Rittenhouse LaboratoryUniversity of PennsylvaniaPhiladelphiaU.S.A.
  2. 2.Instituut voor Theoretische FysicaAmsterdamThe Netherlands
  3. 3.School of PhysicsInstitute for Research in Fundamental Sciences (IPM)TehranIran
  4. 4.The Abdus Salam ICTPTriesteItaly
  5. 5.School of Mathematics and Maxwell Institute for Mathematical SciencesEdinburghUnited Kingdom
  6. 6.Kavli Institute for Theoretical PhysicsUniversity of CaliforniaSanta BarbaraU.S.A.

Personalised recommendations