Journal of High Energy Physics

, 2010:10 | Cite as

Higher equations of motion in boundary Liouville field theory

Article

Abstract

In addition to the ordinary bulk higher equations of motion in the boundary version of the Liouville conformal field theory, an infinite set of relations containing the boundary operators is found. These equations are in one-to-one correspondence with the singular representations of the Virasoro algebra. We comment on the possible applications in the context of minimal boundary Liouville gravity.

Keywords

Field Theories in Lower Dimensions Integrable Equations in Physics Conformal and W Symmetry Integrable Field Theories 

References

  1. [1]
    A. Zamolodchikov, Higher equations of motion in Liouville field theory, Int. J. Mod. Phys. A 19S2 (2004) 510 [hep-th/0312279] [SPIRES].MathSciNetGoogle Scholar
  2. [2]
    A.B. Zamolodchikov, On the three-point function in minimal Liouville gravity, hep-th/0505063 [SPIRES].
  3. [3]
    A. Belavin, and A. Zamolodchikov, Polyakov’s string: Twenty five years after, hep-th/0510214 [SPIRES].
  4. [4]
    A. Belavin and V. Belavin, Four-point function in Super Liouville Gravity, J. Phys. A 42 (2009) 304003 [arXiv:0810.1023] [SPIRES].MathSciNetGoogle Scholar
  5. [5]
    V.A. Belavin, Modular Integrals in Minimal Super Liouville Gravity, Theor. Math. Phys. 161 (2009) 1361 [arXiv:0902.4407] [SPIRES].CrossRefGoogle Scholar
  6. [6]
    V. Fateev, A.B. Zamolodchikov and A.B. Zamolodchikov, Boundary Liouville field theory. I: Boundary state and boundary two-point function, hep-th/0001012 [SPIRES].
  7. [7]
    J.L. Cardy, Conformal Invariance and Surface Critical Behavior, Nucl. Phys. B 240 (1984) 514 [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    H. Dorn and H.J. Otto, Two and three point functions in Liouville theory, Nucl. Phys. B 429 (1994) 375 [hep-th/9403141] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    A.B. Zamolodchikov and A.B. Zamolodchikov, Structure constants and conformal bootstrap in Liouville field theory, Nucl. Phys. B 477 (1996) 577 [hep-th/9506136] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    K. Hosomichi, Bulk-boundary propagator in Liouville theory on a disc, JHEP 11 (2001) 044 [hep-th/0108093] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    B. Ponsot and J. Teschner, Boundary Liouville field theory: Boundary three point function, Nucl. Phys. B 622 (2002) 309 [hep-th/0110244] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  12. [12]
    V.G. Kac, Infinite-dimensional Lie algebras, Prog. Math., Vol.44, Birkhäuser, Boston U.S.A. (1983).MATHGoogle Scholar
  13. [13]
    B.L. Feigin, D.B. Fuchs, Representation of the Virasoro algebra, in: A.M. Vershik, D.P. Zhelobenko, editors, Representations of Lie groups and related topics, Adv. Stud. Contemp. Math., Gordon and Breach, New York U.S.A. (1990) 465.Google Scholar
  14. [14]
    V.S. Dotsenko and V.A. Fateev, Four Point Correlation Functions and the Operator Algebra in the Two-Dimensional Conformal Invariant Theories with the Central Charge c < 1, Nucl. Phys. B 251 (1985) 691 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    M. Goulian and M. Li, Correlation functions in Liouville theory, Phys. Rev. Lett. 66 (1991) 2051 [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    A.M. Polyakov, Quantum geometry of bosonic strings, Phys. Lett. B 103 (1981) 207 [SPIRES].MathSciNetADSGoogle Scholar
  17. [17]
    P.H. Ginsparg and G.W. Moore, Lectures on 2 − D gravity and 2 − D string theory, hep-th/9304011 [SPIRES].
  18. [18]
    P. Di Francesco, P.H. Ginsparg and J. Zinn-Justin, 2 − D Gravity and random matrices, Phys. Rept. 254 (1995) 1 [hep-th/9306153] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    K. Hosomichi, Minimal Open Strings, JHEP 06 (2008) 029 [arXiv:0804.4721] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    J. Polchinski, String Theory, Cambridge University Press, Cambridge U.K. (1998).Google Scholar
  21. [21]
    E. Witten, Ground ring of two-dimensional string theory, Nucl. Phys. B 373 (1992) 187 [hep-th/9108004] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    D. Kutasov, E.J. Martinec and N. Seiberg, Ground rings and their modules in 2 − D gravity with c <= 1 matter, Phys. Lett. B 276 (1992) 437 [hep-th/9111048] [SPIRES].MathSciNetADSGoogle Scholar
  23. [23]
    M.R. Douglas et al., A new hat for the c = 1 matrix model, hep-th/0307195 [SPIRES].
  24. [24]
    N. Seiberg and D. Shih, Branes, rings and matrix models in minimal (super)string theory, JHEP 02 (2004) 021 [hep-th/0312170] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    A. Belavin and V. Belavin, Four-point function in Super Liouville Gravity, J. Phys. A 42 (2009) 304003 [arXiv:0810.1023] [SPIRES].MathSciNetGoogle Scholar
  26. [26]
    E.W. Barnes, The theory of the dougle gamma function, Phil. Trans. Roy. Soc. A 196 (1901) 265.ADSGoogle Scholar
  27. [27]
    V.S. Dotsenko and V.A. Fateev, Conformal algebra and multipoint correlation functions in 2D statistical models, Nucl. Phys. B 240 (1984) 312 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    V.S. Dotsenko and V.A. Fateev, Four Point Correlation Functions and the Operator Algebra in the Two-Dimensional Conformal Invariant Theories with the Central Charge c < 1, Nucl. Phys. B 251 (1985) 691 [SPIRES].CrossRefMathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRASChernogolovkaRussia
  2. 2.Institute of Theoretical and Experimental Physics and Theory DepartmentLebedev Physical Institute, RASMoscowRussia

Personalised recommendations