Journal of High Energy Physics

, 2014:134 | Cite as

Energy positivity, non-renormalization, and holomorphy in Lorentz-violating supersymmetric theories

Open Access
Article

Abstract

This paper shows that the positive-energy and non-renormalization theorems of traditional supersymmetry survive the addition of Lorentz violating interactions. The Lorentz-violating coupling constants in theories using the construction of Berger and Kostelecky must obey certain constraints in order to preserve the positive energy theorem. Seiberg’s holomorphic arguments are used to prove that the superpotential remains non-renormalized (perturbatively) in the presence of Lorentz-violating interactions of the Berger-Kostelecky type. We briefly comment on Lorentz-violating theories of the type constructed by Nibbelink and Pospelov to note that holomorphy arguments offer elegant proofs of many non-renormalization results, some known by other arguments, some new.

Keywords

Space-Time Symmetries Supersymmetric Effective Theories 

References

  1. [1]
    M. Berger and V.A. Kostelecky, Supersymmetry and Lorentz violation, Phys. Rev. D 65 (2002) 091701 [hep-th/0112243] [INSPIRE].ADSGoogle Scholar
  2. [2]
    S. Groot Nibbelink and M. Pospelov, Lorentz violation in supersymmetric field theories, Phys. Rev. Lett. 94 (2005) 081601 [hep-ph/0404271] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    K.A. Intriligator, R. Leigh and N. Seiberg, Exact superpotentials in four-dimensions, Phys. Rev. D 50 (1994) 1092 [hep-th/9403198] [INSPIRE].ADSMathSciNetGoogle Scholar
  4. [4]
    D. Colladay and V.A. Kostelecky, CPT violation and the standard model, Phys. Rev. D 55 (1997) 6760 [hep-ph/9703464] [INSPIRE].ADSGoogle Scholar
  5. [5]
    V.A. Kostelecky and R. Lehnert, Stability, causality and Lorentz and CPT violation, Phys. Rev. D 63 (2001) 065008 [hep-th/0012060] [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    D. Colladay and P. McDonald, Vector Superfields and Lorentz Violation, Phys. Rev. D 83 (2011) 025021 [arXiv:1010.1781] [INSPIRE].ADSGoogle Scholar
  7. [7]
    P.A. Bolokhov, S. Groot Nibbelink and M. Pospelov, Lorentz violating supersymmetric quantum electrodynamics, Phys. Rev. D 72 (2005) 015013 [hep-ph/0505029] [INSPIRE].ADSGoogle Scholar
  8. [8]
    V.A. Kostelecky and N. Russell, Data tables for Lorentz and CPT Violation, Rev. Mod. Phys. 83 (2011) 11 [arXiv:0801.0287] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    N. Seiberg, The power of holomorphy: Exact results in 4 − D SUSY field theories, hep-th/9408013 [INSPIRE].
  10. [10]
    D. Colladay and P. McDonald, One-Loop Renormalization of the Electroweak Sector with Lorentz Violation, Phys. Rev. D 79 (2009) 125019 [arXiv:0904.1219] [INSPIRE].ADSGoogle Scholar
  11. [11]
    D. Colladay and P. McDonald, One-Loop Renormalization of QCD with Lorentz Violation, Phys. Rev. D 77 (2008) 085006 [arXiv:0712.2055] [INSPIRE].ADSGoogle Scholar
  12. [12]
    D. Colladay and P. McDonald, One-Loop Renormalization of Pure Yang-Mills with Lorentz Violation, Phys. Rev. D 75 (2007) 105002 [hep-ph/0609084] [INSPIRE].ADSMathSciNetGoogle Scholar
  13. [13]
    D. Redigolo, On Lorentz-Violating Supersymmetric Quantum Field Theories, Phys. Rev. D 85 (2012) 085009 [arXiv:1106.2035] [INSPIRE].ADSGoogle Scholar
  14. [14]
    J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992), pg. 259.Google Scholar
  15. [15]
    S.P. Martin, A supersymmetry primer, hep-ph/9709356 [INSPIRE].
  16. [16]
    S. Weinberg, Nonrenormalization theorems in nonrenormalizable theories, Phys. Rev. Lett. 80 (1998) 3702 [hep-th/9803099] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. Ferrero and B. Altschul, Renormalization of Scalar and Yukawa Field Theories with Lorentz Violation, Phys. Rev. D 84 (2011) 065030 [arXiv:1104.4778] [INSPIRE].ADSGoogle Scholar
  18. [18]
    C. Farias, A. Lehum, J. Nascimento and A.Y. Petrov, On the superfield supersymmetric aether-like Lorentz-breaking models, Phys. Rev. D 86 (2012) 065035 [arXiv:1206.4508] [INSPIRE].ADSGoogle Scholar
  19. [19]
    P. Jain and J.P. Ralston, Supersymmetry and the Lorentz fine tuning problem, Phys. Lett. B 621 (2005) 213 [hep-ph/0502106] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    N. Seiberg, Supersymmetry and Nonperturbative β-functions, Phys. Lett. B 206 (1988) 75 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    M.A. Shifman and A. Vainshtein, Solution of the Anomaly Puzzle in SUSY Gauge Theories and the Wilson Operator Expansion, Nucl. Phys. B 277 (1986) 456 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    V. Novikov, M.A. Shifman, A. Vainshtein and V.I. Zakharov, Exact Gell-Mann-Low Function of Supersymmetric Yang-Mills Theories from Instanton Calculus, Nucl. Phys. B 229 (1983) 381 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    N. Arkani-Hamed and H. Murayama, Holomorphy, rescaling anomalies and exact β-functions in supersymmetric gauge theories, JHEP 06 (2000) 030 [hep-th/9707133] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    M.J. Strassler, An unorthodox introduction to supersymmetric gauge theory, hep-th/0309149 [INSPIRE].
  25. [25]
    A. Bilal, Duality in N = 2 SUSY SU(2) Yang-Mills theory: A pedagogical introduction to the work of Seiberg and Witten, hep-th/9601007 [INSPIRE].
  26. [26]
    L. Álvarez-Gaumé and S. Hassan, Introduction to S duality in N = 2 supersymmetric gauge theories: A pedagogical review of the work of Seiberg and Witten, Fortsch. Phys. 45 (1997) 159 [hep-th/9701069] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  27. [27]
    E. Kiritsis, Lorentz violation, Gravity, Dissipation and Holography, JHEP 01 (2013) 030 [arXiv:1207.2325] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    R. Sundrum, Gravitational Lorentz Violation and Superluminality via AdS/CFT Duality, Phys. Rev. D 77 (2008) 086002 [arXiv:0708.1871] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Department of PhysicsMuhlenberg CollegeAllentownU.S.A

Personalised recommendations