BPS states, conserved charges and centres of symmetric group algebras


In \( \mathcal{N} \) = 4 SYM with U(N) gauge symmetry, the multiplicity of half-BPS states with fixed dimension can be labelled by Young diagrams and can be distinguished using conserved charges corresponding to Casimirs of U(N). The information theoretic study of LLM geometries and superstars in the dual AdS5× S5 background has raised a number of questions about the distinguishability of Young diagrams when a finite set of Casimirs are known. Using Schur-Weyl duality relations between unitary groups and symmetric groups, these questions translate into structural questions about the centres of symmetric group algebras. We obtain algebraic and computational results about these structural properties and related Shannon entropies, and generate associated number sequences. A characterization of Young diagrams in terms of content distribution functions relates these number sequences to diophantine equations. These content distribution functions can be visualized as connected, segmented, open strings in content space.

A preprint version of the article is available at ArXiv.


  1. [1]

    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [Adv. Theor. Math. Phys.2 (1998) 231] [hep-th/9711200] [INSPIRE].

  2. [2]

    J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from Anti-de Sitter space, JHEP06 (2000) 008 [hep-th/0003075] [INSPIRE].

  3. [3]

    J.M. Maldacena and A. Strominger, AdS3black holes and a stringy exclusion principle, JHEP12 (1998) 005 [hep-th/9804085] [INSPIRE].

  4. [4]

    V. Balasubramanian, M. Berkooz, A. Naqvi and M.J. Strassler, Giant gravitons in conformal field theory, JHEP04 (2002) 034 [hep-th/0107119] [INSPIRE].

  5. [5]

    S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N = 4 SYM theory, Adv. Theor. Math. Phys.5 (2002) 809 [hep-th/0111222] [INSPIRE].

  6. [6]

    D. Berenstein, A toy model for the AdS/CFT correspondence, JHEP07 (2004) 018 [hep-th/0403110] [INSPIRE].

  7. [7]

    A. Bissi, C. Kristjansen, D. Young and K. Zoubos, Holographic three-point functions of giant gravitons, JHEP06 (2011) 085 [arXiv:1103.4079] [INSPIRE].

  8. [8]

    H. Lin, Giant gravitons and correlators, JHEP12 (2012) 011 [arXiv:1209.6624] [INSPIRE].

  9. [9]

    C. Kristjansen, S. Mori and D. Young, On the regularization of extremal three-point functions involving giant gravitons, Phys. Lett.B 750 (2015) 379 [arXiv:1507.03965] [INSPIRE].

  10. [10]

    P. Caputa, R. de Mello Koch and K. Zoubos, Extremal versus non-extremal correlators with giant gravitons, JHEP08 (2012) 143 [arXiv:1204.4172] [INSPIRE].

  11. [11]

    H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP10 (2004) 025 [hep-th/0409174] [INSPIRE].

  12. [12]

    V. Balasubramanian, B. Czech, K. Larjo and J. Simon, Integrability versus information loss: a simple example, JHEP11 (2006) 001 [hep-th/0602263] [INSPIRE].

  13. [13]

    R.C. Myers and O. Tafjord, Superstars and giant gravitons, JHEP11 (2001) 009 [hep-th/0109127] [INSPIRE].

  14. [14]

    V. Balasubramanian, V. Jejjala and J. Simon, The library of Babel, Int. J. Mod. Phys.D 14 (2005) 2181 [hep-th/0505123] [INSPIRE].

  15. [15]

    V. Balasubramanian, J. de Boer, V. Jejjala and J. Simon, The library of Babel: on the origin of gravitational thermodynamics, JHEP12 (2005) 006 [hep-th/0508023] [INSPIRE].

  16. [16]

    D. Berenstein and A. Miller, Reconstructing spacetime from the hologram, even in the classical limit, requires physics beyond the Planck scale, Int. J. Mod. Phys.D 25 (2016) 1644012 [arXiv:1605.05288] [INSPIRE].

  17. [17]

    V. Balasubramanian and B. Czech, Quantitative approaches to information recovery from black holes, Class. Quant. Grav.28 (2011) 163001 [arXiv:1102.3566] [INSPIRE].

  18. [18]

    J. Simon, Correlations vs. connectivity in R-charge, JHEP10 (2018) 048 [arXiv:1805.11279] [INSPIRE].

  19. [19]

    V. Balasubramanian et al., Emergent classical spacetime from microstates of an incipient black hole, JHEP01 (2019) 197 [arXiv:1810.13440] [INSPIRE].

  20. [20]

    V. Balasubramanian, D. Berenstein, B. Feng and M.-x. Huang, D-branes in Yang-Mills theory and emergent gauge symmetry, JHEP03 (2005) 006 [hep-th/0411205] [INSPIRE].

  21. [21]

    V. Balasubramanian, M.-x. Huang, T.S. Levi and A. Naqvi, Open strings from N = 4 superYang-Mills, JHEP08 (2002) 037 [hep-th/0204196] [INSPIRE].

  22. [22]

    Y. Kimura and S. Ramgoolam, Branes, anti-branes and brauer algebras in gauge-gravity duality, JHEP11 (2007) 078 [arXiv:0709.2158] [INSPIRE].

  23. [23]

    T.W. Brown, P.J. Heslop and S. Ramgoolam, Diagonal multi-matrix correlators and BPS operators in N = 4 SYM, JHEP02 (2008) 030 [arXiv:0711.0176] [INSPIRE].

  24. [24]

    T.W. Brown, P.J. Heslop and S. Ramgoolam, Diagonal free field matrix correlators, global symmetries and giant gravitons, JHEP04 (2009) 089 [arXiv:0806.1911] [INSPIRE].

  25. [25]

    R. Bhattacharyya, S. Collins and R. de Mello Koch, Exact multi-matrix correlators, JHEP03 (2008) 044 [arXiv:0801.2061] [INSPIRE].

  26. [26]

    R. Bhattacharyya, R. de Mello Koch and M. Stephanou, Exact multi-restricted Schur polynomial correlators, JHEP06 (2008) 101 [arXiv:0805.3025] [INSPIRE].

  27. [27]

    Y. Kimura and S. Ramgoolam, Enhanced symmetries of gauge theory and resolving the spectrum of local operators, Phys. Rev.D 78 (2008) 126003 [arXiv:0807.3696] [INSPIRE].

  28. [28]

    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE].

  29. [29]

    P. Mattioli and S. Ramgoolam, Permutation centralizer algebras and multi-matrix invariants, Phys. Rev.D 93 (2016) 065040 [arXiv:1601.06086] [INSPIRE].

  30. [30]

    Y. Kimura, Noncommutative Frobenius algebras and open-closed duality, arXiv:1701.08382 [INSPIRE].

  31. [31]

    J. Pasukonis and S. Ramgoolam, Quivers as calculators: counting, correlators and Riemann surfaces, JHEP04 (2013) 094 [arXiv:1301.1980] [INSPIRE].

  32. [32]

    Y. Kimura, Multi-matrix models and noncommutative Frobenius algebras obtained from symmetric groups and Brauer algebras, Commun. Math. Phys.337 (2015) 1 [arXiv:1403.6572] [INSPIRE].

  33. [33]

    D.J. Gross and W. Taylor, Twists and Wilson loops in the string theory of two-dimensional QCD, Nucl. Phys.B 403 (1993) 395 [hep-th/9303046] [INSPIRE].

  34. [34]

    R. Goodman and N.R. Wallach, Representations and invariants of finite groups, Cambridge University Press, Cambridge U.K. (1998).

  35. [35]

    S. Doty, A. Lauve and G.H. Seelinger, Canonical idempotents of multiplicity-free families of algebras, arXiv:1606.08900.

  36. [36]

    J. Ben Geloun and S. Ramgoolam, Counting tensor model observables and branched covers of the 2-sphere, arXiv:1307.6490 [INSPIRE].

  37. [37]

    J. Ben Geloun and S. Ramgoolam, Tensor models, Kronecker coefficients and permutation centralizer algebras, JHEP11 (2017) 092 [arXiv:1708.03524] [INSPIRE].

  38. [38]

    P. Diaz and S.-J. Rey, Orthogonal bases of invariants in tensor models, JHEP02 (2018) 089 [arXiv:1706.02667] [INSPIRE].

  39. [39]

    R. de Mello Koch, D. Gossman and L. Tribelhorn, Gauge invariants, correlators and holography in bosonic and fermionic tensor models, JHEP09 (2017) 011 [arXiv:1707.01455] [INSPIRE].

  40. [40]

    R. De Mello Koch, D. Gossman, N. Hasina Tahiridimbisoa and A.L. Mahu, Holography for tensor models, arXiv:1910.13982 [INSPIRE].

  41. [41]

    H. Itoyama, A. Mironov and A. Morozov, Tensorial generalization of characters, JHEP12 (2019) 127 [arXiv:1909.06921] [INSPIRE].

  42. [42]

    R.C. Avohou, J. Ben Geloun and N. Dub, On the counting of O(N ) tensor invariants, arXiv:1907.04668 [INSPIRE].

  43. [43]

    M. Lassalle, An explicit formula for the characters of the symmetric group, Math. Ann.340 (2008) 383.

  44. [44]

    S. Corteel, A. Goupil and G. Schaeffer, Content evaluation and class symmetric functions, Adv. Math.188 (2004) 315.

  45. [45]

    S. Cordes, G.W. Moore and S. Ramgoolam, Lectures on 2D Yang-Mills theory, equivariant cohomology and topological field theories, Nucl. Phys. Proc. Suppl.41 (1995) 184 [hep-th/9411210] [INSPIRE].

  46. [46]

    O. Ganor, J. Sonnenschein and S. Yankielowicz, The string theory approach to generalized 2 − D Yang-Mills theory, Nucl. Phys.B 434 (1995) 139 [hep-th/9407114] [INSPIRE].

  47. [47]

    Wikipedia, Set partitions, https://en.wikipedia.org/wiki/Partition of a set.

  48. [48]

    Wikipedia, Stirling numbers of the second kind, https://en.wikipedia.org/wiki/Stirling numbers of the second kind.

  49. [49]

    M.A. Nielsen and I.L Chuang, Quantum computation and quantum information, Cambridge University Press, Cambridge U.K. (2010).

  50. [50]

    P. Grunwald and P. Vitanyi, Shannon information and Kolmogorov complexity, cs/0410002.

  51. [51]

    S. Patilkulkarni and H.C. Vijaylakshmi, Vanishing moments of a wavelet system and feature set in face detection problem for color images, Int. J. Comput. Appl.66 (2013) 36.

  52. [52]

    M. Stephane, A wavelet tour of signal processing, 3rd edition, Academic Press, U.S.A. (2009).

  53. [53]

    F. Keinert, Wavelets and multiwavelets, Chapman and Hall/CRC, U.S.A. (2003).

  54. [54]

    I.G. Macdonald, Symmetric functions and Hall polynomials, Oxford classic texts in the physical sciences, Clarendon Press, Oxford U.K. (1998).

  55. [55]

    S. Ramgoolam and M. Sedlák, Quantum information processing and composite quantum fields, JHEP01 (2019) 170 [arXiv:1809.05156] [INSPIRE].

  56. [56]

    D. Berenstein, Submatrix deconfinement and small black holes in AdS, JHEP09 (2018) 054 [arXiv:1806.05729] [INSPIRE].

  57. [57]

    O. Aharony, Y.E. Antebi, M. Berkooz and R. Fishman, ‘Holey sheets’: Pfaffians and subdeterminants as D-brane operators in large N gauge theories, JHEP12 (2002) 069 [hep-th/0211152] [INSPIRE].

  58. [58]

    P. Caputa, R. de Mello Koch and P. Diaz, Operators, correlators and free fermions for SO(N ) and Sp(N ), JHEP06 (2013) 018 [arXiv:1303.7252] [INSPIRE].

  59. [59]

    P. Caputa, R. de Mello Koch and P. Diaz, A basis for large operators in N = 4 SYM with orthogonal gauge group, JHEP03 (2013) 041 [arXiv:1301.1560] [INSPIRE].

  60. [60]

    G. Kemp, Restricted Schurs and correlators for SO(N ) and Sp(N ), JHEP08 (2014) 137 [arXiv:1406.3854] [INSPIRE].

  61. [61]

    G. Kemp, SO(N ) restricted Schur polynomials, J. Math. Phys.56 (2015) 022302 [arXiv:1405.7017] [INSPIRE].

  62. [62]

    C. Lewis-Brown and S. Ramgoolam, BPS operators in \( \mathcal{N} \) = 4 SO(N ) super Yang-Mills theory: plethysms, dominoes and words, JHEP11 (2018) 035 [arXiv:1804.11090] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information



Corresponding author

Correspondence to Garreth Kemp.

Additional information

ArXiv ePrint: 1911.11649

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kemp, G., Ramgoolam, S. BPS states, conserved charges and centres of symmetric group algebras. J. High Energ. Phys. 2020, 146 (2020). https://doi.org/10.1007/JHEP01(2020)146

Download citation


  • AdS-CFT Correspondence
  • Black Holes in String Theory
  • Gauge-gravity correspondence