Evaluating a family of two-loop non-planar master integrals for Higgs + jet production with full heavy-quark mass dependence

Abstract

We present the analytic computation of a family of non-planar master integrals which contribute to the two-loop scattering amplitudes for Higgs plus one jet production, with full heavy-quark mass dependence. These are relevant for the NNLO corrections to inclusive Higgs production and for the NLO corrections to Higgs production in association with a jet, in QCD. The computation of the integrals is performed with the method of differential equations. We provide a choice of basis for the polylogarithmic sectors, that puts the system of differential equations in canonical form. Solutions up to weight 2 are provided in terms of logarithms and dilogarithms, and 1-fold integral solutions are provided at weight 3 and 4. There are two elliptic sectors in the family, which are computed by solving their associated set of differential equations in terms of generalized power series. The resulting series may be truncated to obtain numerical results with high precision. The series solution renders the analytic continuation to the physical region straightforward. Moreover, we show how the series expansion method can be used to obtain accurate numerical results for all the master integrals of the family in all kinematic regions.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  2. [2]

    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett.B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  3. [3]

    R.V. Harlander and T. Neumann, Probing the nature of the Higgs-gluon coupling, Phys. Rev.D 88 (2013) 074015 [arXiv:1308.2225] [INSPIRE].

  4. [4]

    A. Banfi, A. Martin and V. Sanz, Probing top-partners in Higgs+jets, JHEP08 (2014) 053 [arXiv:1308.4771] [INSPIRE].

  5. [5]

    A. Azatov and A. Paul, Probing Higgs couplings with high pTHiggs production, JHEP01 (2014) 014 [arXiv:1309.5273] [INSPIRE].

  6. [6]

    C. Grojean, E. Salvioni, M. Schlaffer and A. Weiler, Very boosted Higgs in gluon fusion, JHEP05 (2014) 022 [arXiv:1312.3317] [INSPIRE].

  7. [7]

    M. Schlaffer et al., Boosted Higgs shapes, Eur. Phys. J.C 74 (2014) 3120 [arXiv:1405.4295] [INSPIRE].

  8. [8]

    M. Buschmann et al., Resolving the Higgs-gluon coupling with jets, Phys. Rev.D 90 (2014) 013010 [arXiv:1405.7651] [INSPIRE].

  9. [9]

    S. Dawson, I.M. Lewis and M. Zeng, Effective field theory for Higgs boson plus jet production, Phys. Rev.D 90 (2014) 093007 [arXiv:1409.6299] [INSPIRE].

  10. [10]

    M. Buschmann et al., Mass effects in the Higgs-gluon coupling: boosted vs. off-shell production, JHEP02 (2015) 038 [arXiv:1410.5806] [INSPIRE].

  11. [11]

    D. Ghosh and M. Wiebusch, Dimension-six triple gluon operator in Higgs + jet observables, Phys. Rev.D 91 (2015) 031701 [arXiv:1411.2029] [INSPIRE].

  12. [12]

    S. Dawson, I.M. Lewis and M. Zeng, Usefulness of effective field theory for boosted Higgs production, Phys. Rev.D 91 (2015) 074012 [arXiv:1501.04103] [INSPIRE].

  13. [13]

    U. Langenegger, M. Spira and I. Strebel, Testing the Higgs boson coupling to gluons, arXiv:1507.01373 [INSPIRE].

  14. [14]

    A. Azatov, C. Grojean, A. Paul and E. Salvioni, Resolving gluon fusion loops at current and future hadron colliders, JHEP09 (2016) 123 [arXiv:1608.00977] [INSPIRE].

  15. [15]

    M. Grazzini, A. Ilnicka, M. Spira and M. Wiesemann, Modeling BSM effects on the Higgs transverse-momentum spectrum in an EFT approach, JHEP03 (2017) 115 [arXiv:1612.00283] [INSPIRE].

  16. [16]

    M. Grazzini, A. Ilnicka and M. Spira, Higgs boson production at large transverse momentum within the SMEFT: analytical results, Eur. Phys. J.C 78 (2018) 808 [arXiv:1806.08832] [INSPIRE].

  17. [17]

    M. Gorbahn and U. Haisch, Two-loop amplitudes for Higgs plus jet production involving a modified trilinear Higgs coupling, JHEP04 (2019) 062 [arXiv:1902.05480] [INSPIRE].

  18. [18]

    R.K. Ellis et al., Higgs decay to τ+τ: a possible signature of intermediate mass Higgs bosons at the SSC, Nucl. Phys.B 297 (1988) 221 [INSPIRE].

  19. [19]

    R.P. Kauffman, Higgs boson pT in gluon fusion, Phys. Rev.D 44 (1991) 1415 [INSPIRE].

  20. [20]

    S.P. Jones, M. Kerner and G. Luisoni, Next-to-leading-order QCD corrections to Higgs boson plus jet production with full top-quark mass dependence, Phys. Rev. Lett.120 (2018) 162001 [arXiv:1802.00349] [INSPIRE].

  21. [21]

    R. Boughezal et al., Higgs boson production in association with a jet at next-to-next-to-leading order, Phys. Rev. Lett.115 (2015) 082003 [arXiv:1504.07922] [INSPIRE].

  22. [22]

    R. Boughezal et al., Higgs boson production in association with a jet at NNLO using jettiness subtraction, Phys. Lett.B 748 (2015) 5 [arXiv:1505.03893] [INSPIRE].

  23. [23]

    X. Chen et al., NNLO QCD corrections to Higgs boson production at large transverse momentum, JHEP10 (2016) 066 [arXiv:1607.08817] [INSPIRE].

  24. [24]

    U. Baur and E.W.N. Glover, Higgs boson production at large transverse momentum in hadronic collisions, Nucl. Phys.B 339 (1990) 38 [INSPIRE].

  25. [25]

    D. de Florian, M. Grazzini and Z. Kunszt, Higgs production with large transverse momentum in hadronic collisions at next-to-leading order, Phys. Rev. Lett.82 (1999) 5209 [hep-ph/9902483] [INSPIRE].

  26. [26]

    J.M. Lindert, K. Melnikov, L. Tancredi and C. Wever, Top-bottom interference effects in Higgs plus jet production at the LHC, Phys. Rev. Lett.118 (2017) 252002 [arXiv:1703.03886] [INSPIRE].

  27. [27]

    J.M. Lindert, K. Kudashkin, K. Melnikov and C. Wever, Higgs bosons with large transverse momentum at the LHC, Phys. Lett.B 782 (2018) 210 [arXiv:1801.08226] [INSPIRE].

  28. [28]

    T. Neumann, NLO Higgs+jet production at large transverse momenta including top quark mass effects, J. Phys. Comm.2 (2018) 095017 [arXiv:1802.02981] [INSPIRE].

  29. [29]

    K. Kudashkin, K. Melnikov and C. Wever, Two-loop amplitudes for processes gg → Hg, qg → H q and q \( \overline{q} \)→ H g at large Higgs transverse momentum, JHEP02 (2018) 135 [arXiv:1712.06549] [INSPIRE].

  30. [30]

    R. Bonciani et al., Two-loop planar master integrals for Higgs → 3 partons with full heavy-quark mass dependence, JHEP12 (2016) 096 [arXiv:1609.06685] [INSPIRE].

  31. [31]

    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun.140 (2001) 418 [hep-ph/0012260] [INSPIRE].

  32. [32]

    A.V. Smirnov, Algorithm FIRE – Feynman Integral REduction, JHEP10 (2008) 107 [arXiv:0807.3243] [INSPIRE].

  33. [33]

    A.V. Smirnov and V.A. Smirnov, FIRE4, LiteRed and accompanying tools to solve integration by parts relations, Comput. Phys. Commun.184 (2013) 2820 [arXiv:1302.5885] [INSPIRE].

  34. [34]

    A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun.189 (2015) 182 [arXiv:1408.2372] [INSPIRE].

  35. [35]

    A.V. Smirnov and F.S. Chuharev, FIRE6: Feynman Integral REduction with modular arithmetic, arXiv:1901.07808 [INSPIRE].

  36. [36]

    P. Maierhöfer, J. Usovitsch and P. Uwer, Kira — A Feynman integral reduction program, Comput. Phys. Commun.230 (2018) 99 [arXiv:1705.05610] [INSPIRE].

  37. [37]

    P. Maierhöfer and J. Usovitsch, Kira 1.2 release notes, arXiv:1812.01491 [INSPIRE].

  38. [38]

    J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett.110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].

  39. [39]

    K.T. Chen, Iterated path integrals, Bull. Amer. Math. Soc.83 (1977) 831.

  40. [40]

    M. Heller, A. von Manteuffel and R.M. Schabinger, Multiple polylogarithms with algebraic arguments and the two-loop EW-QCD Drell-Yan master integrals, arXiv:1907.00491 [INSPIRE].

  41. [41]

    F.C.S. Brown, Multiple zeta values and periods of moduli spaces 𝔐0,n, Annales Sci. Ecole Norm. Sup.42 (2009) 371 [math/0606419].

  42. [42]

    A.B. Goncharov, A simple construction of Grassmannian polylogarithms, arXiv:0908.2238 [INSPIRE].

  43. [43]

    A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett.105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].

  44. [44]

    C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic functions, JHEP10 (2012) 075 [arXiv:1110.0458] [INSPIRE].

  45. [45]

    E. Panzer, On hyperlogarithms and Feynman integrals with divergences and many scales, JHEP03 (2014) 071 [arXiv:1401.4361] [INSPIRE].

  46. [46]

    F.C.S. Brown, On the periods of some Feynman integrals, arXiv:0910.0114 [INSPIRE].

  47. [47]

    E. Panzer, Feynman integrals and hyperlogarithms, Ph.D. thesis, Humboldt University, Berlin, Germany (2015), arXiv:1506.07243 [INSPIRE].

  48. [48]

    E. Panzer, Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals, Comput. Phys. Commun.188 (2015) 148 [arXiv:1403.3385] [INSPIRE].

  49. [49]

    A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett.5 (1998) 497 [arXiv:1105.2076] [INSPIRE].

  50. [50]

    H. Frellesvig, D. Tommasini and C. Wever, On the reduction of generalized polylogarithms to Lin and Li2,2and on the evaluation thereof, JHEP03 (2016) 189 [arXiv:1601.02649] [INSPIRE].

  51. [51]

    S. Caron-Huot and J.M. Henn, Iterative structure of finite loop integrals, JHEP06 (2014) 114 [arXiv:1404.2922] [INSPIRE].

  52. [52]

    F.C.S. Brown and A. Levin, Multiple elliptic polylogarithms, arXiv:1110.6917.

  53. [53]

    J. Broedel, C.R. Mafra, N. Matthes and O. Schlotterer, Elliptic multiple zeta values and one-loop superstring amplitudes, JHEP07 (2015) 112 [arXiv:1412.5535] [INSPIRE].

  54. [54]

    L. Adams, C. Bogner, A. Schweitzer and S. Weinzierl, The kite integral to all orders in terms of elliptic polylogarithms, J. Math. Phys.57 (2016) 122302 [arXiv:1607.01571] [INSPIRE].

  55. [55]

    J. Broedel, C. Duhr, F. Dulat and L. Tancredi, Elliptic polylogarithms and iterated integrals on elliptic curves. Part I: general formalism, JHEP05 (2018) 093 [arXiv:1712.07089] [INSPIRE].

  56. [56]

    S. Laporta and E. Remiddi, Analytic treatment of the two loop equal mass sunrise graph, Nucl. Phys.B 704 (2005) 349 [hep-ph/0406160] [INSPIRE].

  57. [57]

    B.A. Kniehl, A.V. Kotikov, A. Onishchenko and O. Veretin, Two-loop sunset diagrams with three massive lines, Nucl. Phys.B 738 (2006) 306 [hep-ph/0510235] [INSPIRE].

  58. [58]

    L. Adams, C. Bogner and S. Weinzierl, The two-loop sunrise graph with arbitrary masses, J. Math. Phys.54 (2013) 052303 [arXiv:1302.7004] [INSPIRE].

  59. [59]

    S. Bloch and P. Vanhove, The elliptic dilogarithm for the sunset graph, J. Number Theor.148 (2015) 328 [arXiv:1309.5865] [INSPIRE].

  60. [60]

    S. Bloch, M. Kerr and P. Vanhove, A Feynman integral via higher normal functions, Compos. Math.151 (2015) 2329 [arXiv:1406.2664] [INSPIRE].

  61. [61]

    L. Adams, C. Bogner and S. Weinzierl, The two-loop sunrise graph in two space-time dimensions with arbitrary masses in terms of elliptic dilogarithms, J. Math. Phys.55 (2014) 102301 [arXiv:1405.5640] [INSPIRE].

  62. [62]

    L. Adams, C. Bogner and S. Weinzierl, The two-loop sunrise integral around four space-time dimensions and generalisations of the Clausen and Glaisher functions towards the elliptic case, J. Math. Phys.56 (2015) 072303 [arXiv:1504.03255] [INSPIRE].

  63. [63]

    L. Adams, C. Bogner and S. Weinzierl, The iterated structure of the all-order result for the two-loop sunrise integral, J. Math. Phys.57 (2016) 032304 [arXiv:1512.05630] [INSPIRE].

  64. [64]

    E. Remiddi and L. Tancredi, Differential equations and dispersion relations for Feynman amplitudes. The two-loop massive sunrise and the kite integral, Nucl. Phys.B 907 (2016) 400 [arXiv:1602.01481] [INSPIRE].

  65. [65]

    A. Primo and L. Tancredi, On the maximal cut of Feynman integrals and the solution of their differential equations, Nucl. Phys.B 916 (2017) 94 [arXiv:1610.08397] [INSPIRE].

  66. [66]

    G. Passarino, Elliptic polylogarithms and basic hypergeometric functions, Eur. Phys. J.C 77 (2017) 77 [arXiv:1610.06207] [INSPIRE].

  67. [67]

    M. Harley, F. Moriello and R.M. Schabinger, Baikov-Lee representations of cut feynman integrals, JHEP06 (2017) 049 [arXiv:1705.03478] [INSPIRE].

  68. [68]

    A. von Manteuffel and L. Tancredi, A non-planar two-loop three-point function beyond multiple polylogarithms, JHEP06 (2017) 127 [arXiv:1701.05905] [INSPIRE].

  69. [69]

    J. Ablinger et al., Iterated elliptic and hypergeometric integrals for Feynman diagrams, J. Math. Phys.59 (2018) 062305 [arXiv:1706.01299] [INSPIRE].

  70. [70]

    L.-B. Chen, Y. Liang and C.-F. Qiao, NNLO QCD corrections to γ + ηc (ηb) exclusive production in electron-positron collision, JHEP01 (2018) 091 [arXiv:1710.07865] [INSPIRE].

  71. [71]

    M. Hidding and F. Moriello, All orders structure and efficient computation of linearly reducible elliptic Feynman integrals, JHEP01 (2019) 169 [arXiv:1712.04441] [INSPIRE].

  72. [72]

    C. Bogner, A. Schweitzer and S. Weinzierl, Analytic continuation and numerical evaluation of the kite integral and the equal mass sunrise integral, Nucl. Phys.B 922 (2017) 528 [arXiv:1705.08952] [INSPIRE].

  73. [73]

    J.L. Bourjaily et al., Elliptic double-box integrals: massless scattering amplitudes beyond polylogarithms, Phys. Rev. Lett.120 (2018) 121603 [arXiv:1712.02785] [INSPIRE].

  74. [74]

    J. Broedel, C. Duhr, F. Dulat and L. Tancredi, Elliptic polylogarithms and iterated integrals on elliptic curves II: an application to the sunrise integral, Phys. Rev.D 97 (2018) 116009 [arXiv:1712.07095] [INSPIRE].

  75. [75]

    S. Laporta, High-precision calculation of the 4-loop contribution to the electron g − 2 in QED, Phys. Lett.B 772 (2017) 232 [arXiv:1704.06996] [INSPIRE].

  76. [76]

    J. Broedel et al., Elliptic symbol calculus: from elliptic polylogarithms to iterated integrals of Eisenstein series, JHEP08 (2018) 014 [arXiv:1803.10256] [INSPIRE].

  77. [77]

    B. Mistlberger, Higgs boson production at hadron colliders at N3LO in QCD, JHEP05 (2018) 028 [arXiv:1802.00833] [INSPIRE].

  78. [78]

    R.N. Lee, Symmetric E- and (𝜖 + 1/2)-forms and quadratic constraints in “elliptic” sectors, JHEP10 (2018) 176 [arXiv:1806.04846] [INSPIRE].

  79. [79]

    J. Broedel et al., Elliptic Feynman integrals and pure functions, JHEP01 (2019) 023 [arXiv:1809.10698] [INSPIRE].

  80. [80]

    L. Adams, E. Chaubey and S. Weinzierl, Planar double box integral for top pair production with a closed top loop to all orders in the dimensional regularization parameter, Phys. Rev. Lett.121 (2018) 142001 [arXiv:1804.11144] [INSPIRE].

  81. [81]

    L. Adams, E. Chaubey and S. Weinzierl, Analytic results for the planar double box integral relevant to top-pair production with a closed top loop, JHEP10 (2018) 206 [arXiv:1806.04981] [INSPIRE].

  82. [82]

    J. Broedel et al., Elliptic polylogarithms and Feynman parameter integrals, JHEP05 (2019) 120 [arXiv:1902.09971] [INSPIRE].

  83. [83]

    C. Bogner, S. Müller-Stach and S. Weinzierl, The unequal mass sunrise integral expressed through iterated integrals on \( \overline{\mathcal{M}} \)1,3, arXiv:1907.01251 [INSPIRE].

  84. [84]

    B.A. Kniehl, A.V. Kotikov, A.I. Onishchenko and O.L. Veretin, Two-loop diagrams in non-relativistic QCD with elliptics, Nucl. Phys.B 948 (2019) 114780 [arXiv:1907.04638] [INSPIRE].

  85. [85]

    J. Broedel et al., An analytic solution for the equal-mass banana graph, JHEP09 (2019) 112 [arXiv:1907.03787] [INSPIRE].

  86. [86]

    S. Pozzorini and E. Remiddi, Precise numerical evaluation of the two loop sunrise graph master integrals in the equal mass case, Comput. Phys. Commun.175 (2006) 381 [hep-ph/0505041] [INSPIRE].

  87. [87]

    U. Aglietti, R. Bonciani, L. Grassi and E. Remiddi, The two loop crossed ladder vertex diagram with two massive exchanges, Nucl. Phys.B 789 (2008) 45 [arXiv:0705.2616] [INSPIRE].

  88. [88]

    R. Mueller and D.G. Öztürk, On the computation of finite bottom-quark mass effects in Higgs boson production, JHEP08 (2016) 055 [arXiv:1512.08570] [INSPIRE].

  89. [89]

    R.N. Lee, A.V. Smirnov and V.A. Smirnov, Solving differential equations for Feynman integrals by expansions near singular points, JHEP03 (2018) 008 [arXiv:1709.07525] [INSPIRE].

  90. [90]

    R.N. Lee, A.V. Smirnov and V.A. Smirnov, Evaluating ‘elliptic’ master integrals at special kinematic values: using differential equations and their solutions via expansions near singular points, JHEP07 (2018) 102 [arXiv:1805.00227] [INSPIRE].

  91. [91]

    R. Bonciani, G. Degrassi, P.P. Giardino and R. Gröber, A numerical routine for the crossed vertex diagram with a massive-particle loop, Comput. Phys. Commun.241 (2019) 122 [arXiv:1812.02698] [INSPIRE].

  92. [92]

    K. Melnikov, L. Tancredi and C. Wever, Two-loop gg → H g amplitude mediated by a nearly massless quark, JHEP11 (2016) 104 [arXiv:1610.03747] [INSPIRE].

  93. [93]

    K. Melnikov, L. Tancredi and C. Wever, Two-loop amplitudes for qg → H q and q \( \overline{q} \)→ H g mediated by a nearly massless quark, Phys. Rev.D 95 (2017) 054012 [arXiv:1702.00426] [INSPIRE].

  94. [94]

    R. Bonciani, G. Degrassi, P.P. Giardino and R. Gr¨ober, Analytical method for next-to-leading-order QCD corrections to double-Higgs production, Phys. Rev. Lett.121 (2018) 162003 [arXiv:1806.11564] [INSPIRE].

  95. [95]

    R. Brüser, S. Caron-Huot and J.M. Henn, Subleading Regge limit from a soft anomalous dimension, JHEP04 (2018) 047 [arXiv:1802.02524] [INSPIRE].

  96. [96]

    J. Davies, G. Mishima, M. Steinhauser and D. Wellmann, Double-Higgs boson production in the high-energy limit: planar master integrals, JHEP03 (2018) 048 [arXiv:1801.09696] [INSPIRE].

  97. [97]

    J. Davies, G. Mishima, M. Steinhauser and D. Wellmann, Double Higgs boson production at NLO in the high-energy limit: complete analytic results, JHEP01 (2019) 176 [arXiv:1811.05489] [INSPIRE].

  98. [98]

    W. Wasow, Asymptotic expansions for ordinary differential equations, Pure and Applied Mathematics, Dover Books, U.S.A. (1965).

  99. [99]

    E. Coddington, Theory of ordinary differential equations, McGraw-Hill Book Company Inc., U.S.A. (1955).

  100. [100]

    F. Moriello, Generalised power series expansions for the elliptic planar families of Higgs + jet production at two loops, arXiv:1907.13234 [INSPIRE].

  101. [101]

    A.V. Smirnov, FIESTA4: Optimized Feynman integral calculations with GPU support, Comput. Phys. Commun.204 (2016) 189 [arXiv:1511.03614] [INSPIRE].

  102. [102]

    V.A. Smirnov, Asymptotic expansions in limits of large momenta and masses, Commun. Math. Phys.134 (1990) 109 [INSPIRE].

  103. [103]

    V.A. Smirnov, Asymptotic expansions in momenta and masses and calculation of Feynman diagrams, Mod. Phys. Lett.A 10 (1995) 1485 [hep-th/9412063] [INSPIRE].

  104. [104]

    V.A. Smirnov, Applied asymptotic expansions in momenta and masses, Springer Tracts Mod. Phys.177 (2002) 1.

  105. [105]

    M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys.B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].

  106. [106]

    B. Jantzen, Foundation and generalization of the expansion by regions, JHEP12 (2011) 076 [arXiv:1111.2589] [INSPIRE].

  107. [107]

    T.Y. Semenova, A.V. Smirnov and V.A. Smirnov, On the status of expansion by regions, Eur. Phys. J.C 79 (2019) 136 [arXiv:1809.04325] [INSPIRE].

  108. [108]

    V.A. Smirnov, Problems of the strategy of regions, Phys. Lett.B 465 (1999) 226 [hep-ph/9907471] [INSPIRE].

  109. [109]

    A. Pak and A. Smirnov, Geometric approach to asymptotic expansion of Feynman integrals, Eur. Phys. J.C 71 (2011) 1626 [arXiv:1011.4863] [INSPIRE].

  110. [110]

    B. Jantzen, A.V. Smirnov and V.A. Smirnov, Expansion by regions: revealing potential and Glauber regions automatically, Eur. Phys. J.C 72 (2012) 2139 [arXiv:1206.0546] [INSPIRE].

  111. [111]

    H. Frellesvig and C.G. Papadopoulos, Cuts of Feynman integrals in Baikov representation, JHEP04 (2017) 083 [arXiv:1701.07356] [INSPIRE].

  112. [112]

    H. Frellesvig et al., Decomposition of Feynman Integrals on the Maximal Cut by Intersection Numbers, JHEP05 (2019) 153 [arXiv:1901.11510] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. Maestri.

Additional information

ArXiv ePrint: 1907.13156

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bonciani, R., Del Duca, V., Frellesvig, H. et al. Evaluating a family of two-loop non-planar master integrals for Higgs + jet production with full heavy-quark mass dependence. J. High Energ. Phys. 2020, 132 (2020). https://doi.org/10.1007/JHEP01(2020)132

Download citation

Keywords

  • Higgs Physics
  • Perturbative QCD