Skip to main content

Dynamics of phase separation from holography

A preprint version of the article is available at arXiv.

Abstract

We use holography to develop a physical picture of the real-time evolution of the spinodal instability of a four-dimensional, strongly-coupled gauge theory with a first-order, thermal phase transition. We numerically solve Einstein’s equations to follow the evolution, in which we identify four generic stages: a first, linear stage in which the instability grows exponentially; a second, non-linear stage in which peaks and/or phase domains are formed; a third stage in which these structures merge; and a fourth stage in which the system finally relaxes to a static, phase-separated configuration. On the gravity side the latter is described by a static, stable, inhomogeneous horizon. We conjecture and provide evidence that all static, non-phase separated configurations in large enough boxes are dynamically unstable. We show that all four stages are well described by the constitutive relations of second-order hydrodynamics that include all second-order gradients that are purely spatial in the local rest frame. In contrast, a Müller-Israel-Stewart-type formulation of hydrodynamics fails to provide a good description for two reasons. First, it misses some large, purely-spatial gradient corrections. Second, several second-order transport coefficients in this formulation, including the relaxation times τπ and τΠ, diverge at the points where the speed of sound vanishes.

References

  1. [1]

    P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett.102 (2009) 211601 [arXiv:0812.2053] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. [2]

    P.M. Chesler and L.G. Yaffe, Boost invariant flow, black hole formation and far-from-equilibrium dynamics in N = 4 supersymmetric Yang-Mills theory, Phys. Rev.D 82 (2010) 026006 [arXiv:0906.4426] [INSPIRE].

  3. [3]

    M.P. Heller, R.A. Janik and P. Witaszczyk, The characteristics of thermalization of boost-invariant plasma from holography, Phys. Rev. Lett.108 (2012) 201602 [arXiv:1103.3452] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    P.M. Chesler and L.G. Yaffe, Holography and colliding gravitational shock waves in asymptotically AdS5spacetime, Phys. Rev. Lett.106 (2011) 021601 [arXiv:1011.3562] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    M.P. Heller et al., Strong coupling isotropization of non-Abelian plasmas simplified, Phys. Rev. Lett.108 (2012) 191601 [arXiv:1202.0981] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    M.P. Heller, D. Mateos, W. van der Schee and M. Triana, Holographic isotropization linearized, JHEP09 (2013) 026 [arXiv:1304.5172] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    J. Casalderrey-Solana, M.P. Heller, D. Mateos and W. van der Schee, From full stopping to transparency in a holographic model of heavy ion collisions, Phys. Rev. Lett.111 (2013) 181601 [arXiv:1305.4919] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    J. Casalderrey-Solana, M.P. Heller, D. Mateos and W. van der Schee, Longitudinal coherence in a holographic model of asymmetric collisions, Phys. Rev. Lett.112 (2014) 221602 [arXiv:1312.2956] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    P.M. Chesler and L.G. Yaffe, Holography and off-center collisions of localized shock waves, JHEP10 (2015) 070 [arXiv:1501.04644] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    P.M. Chesler, Colliding shock waves and hydrodynamics in small systems, Phys. Rev. Lett.115 (2015) 241602 [arXiv:1506.02209] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    P.M. Chesler and W. van der Schee, Early thermalization, hydrodynamics and energy loss in AdS/CFT, Int. J. Mod. Phys.E 24 (2015) 1530011 [arXiv:1501.04952] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    A. Buchel, M.P. Heller and R.C. Myers, Equilibration rates in a strongly coupled nonconformal quark-gluon plasma, Phys. Rev. Lett.114 (2015) 251601 [arXiv:1503.07114] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    P.M. Chesler, How big are the smallest drops of quark-gluon plasma?, JHEP03 (2016) 146 [arXiv:1601.01583] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. [14]

    M. Attems et al., Holographic collisions in non-conformal theories, JHEP01 (2017) 026 [arXiv:1604.06439] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    J. Casalderrey-Solana, D. Mateos, W. van der Schee and M. Triana, Holographic heavy ion collisions with baryon charge, JHEP09 (2016) 108 [arXiv:1607.05273] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    M. Attems et al., Thermodynamics, transport and relaxation in non-conformal theories, JHEP10 (2016) 155 [arXiv:1603.01254] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. [17]

    U. Gürsoy, A. Jansen and W. van der Schee, New dynamical instability in asymptotically anti–de Sitter spacetime, Phys. Rev.D 94 (2016) 061901 [arXiv:1603.07724] [INSPIRE].

  18. [18]

    M. Attems et al., Paths to equilibrium in non-conformal collisions, JHEP06 (2017) 154 [arXiv:1703.09681] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. [19]

    R. Rougemont et al., Dynamical versus equilibrium properties of the QCD phase transition: a holographic perspective, Phys. Rev.D 96 (2017) 014032 [arXiv:1704.05558] [INSPIRE].

  20. [20]

    R. Critelli, R. Rougemont and J. Noronha, Holographic Bjorken flow of a hot and dense fluid in the vicinity of a critical point, Phys. Rev.D 99 (2019) 066004 [arXiv:1805.00882] [INSPIRE].

  21. [21]

    A. Buchel, Non-conformal holographic Gauss-Bonnet hydrodynamics, JHEP03 (2018) 037 [arXiv:1801.06165] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. [22]

    A. Czajka et al., Bulk viscosity at extreme limits: from kinetic theory to strings, JHEP07 (2019) 145 [arXiv:1807.04713] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. [23]

    A. Czajka et al., On bulk viscosity at weak and strong ’t Hooft couplings, arXiv:1807.07950 [INSPIRE].

  24. [24]

    M. Attems et al., Holographic collisions across a phase transition, Phys. Rev. Lett.121 (2018) 261601 [arXiv:1807.05175] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    J. Casalderrey-Solana et al., Gauge/string duality, hot QCD and heavy ion collisions, arXiv:1101.0618 [INSPIRE].

  26. [26]

    M. Attems et al., Phase transitions, inhomogeneous horizons and second-order hydrodynamics, JHEP06 (2017) 129 [arXiv:1703.02948] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  27. [27]

    R.A. Janik, J. Jankowski and H. Soltanpanahi, Real-time dynamics and phase separation in a holographic first order phase transition, Phys. Rev. Lett.119 (2017) 261601 [arXiv:1704.05387] [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    M.A. Stephanov, K. Rajagopal and E.V. Shuryak, Signatures of the tricritical point in QCD, Phys. Rev. Lett.81 (1998) 4816 [hep-ph/9806219] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    M.A. Stephanov, K. Rajagopal and E.V. Shuryak, Event-by-event fluctuations in heavy ion collisions and the QCD critical point, Phys. Rev.D 60 (1999) 114028 [hep-ph/9903292] [INSPIRE].

  30. [30]

    M. Stephanov and Y. Yin, Hydrodynamics with parametric slowing down and fluctuations near the critical point, Phys. Rev.D 98 (2018) 036006 [arXiv:1712.10305] [INSPIRE].

  31. [31]

    P. Romatschke and U. Romatschke, Relativistic fluid dynamics in and out of equilibrium, arXiv:1712.05815, [INSPIRE].

  32. [32]

    S.S. Gubser and I. Mitra, Instability of charged black holes in Anti-de Sitter space, Clay Math. Proc.1 (2002) 221 [hep-th/0009126] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  33. [33]

    S.S. Gubser and I. Mitra, The evolution of unstable black holes in anti-de Sitter space, JHEP08 (2001) 018 [hep-th/0011127] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  34. [34]

    P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett.94 (2005) 111601 [hep-th/0405231] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    C. Eling and Y. Oz, A novel formula for bulk viscosity from the null horizon focusing equation, JHEP06 (2011) 007 [arXiv:1103.1657] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  36. [36]

    A. Buchel, A Holographic perspective on Gubser-Mitra conjecture, Nucl. Phys.B 731 (2005) 109 [hep-th/0507275] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  37. [37]

    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, World-volume effective theory for higher-dimensional black holes, Phys. Rev. Lett.102 (2009) 191301 [arXiv:0902.0427] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  38. [38]

    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Essentials of blackfold dynamics, JHEP03 (2010) 063 [arXiv:0910.1601] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  39. [39]

    R. Gregory and R. Laflamme, Black strings and p-branes are unstable, Phys. Rev. Lett.70 (1993) 2837 [hep-th/9301052] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  40. [40]

    M. Attems et al., Dynamics of phase separation from holography [Data set], on Zenodo (2019).

  41. [41]

    O. Dias, J. Santos and B. Way, private communication.

  42. [42]

    A. Donos and J.P. Gauntlett, On the thermodynamics of periodic AdS black branes, JHEP10 (2013) 038 [arXiv:1306.4937] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  43. [43]

    J. Armas, J. Bhattacharya and N. Kundu, Surface transport in plasma-balls, JHEP06 (2016) 015 [arXiv:1512.08514] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  44. [44]

    J. Armas, J. Bhattacharya, A. Jain and N. Kundu, On the surface of superfluids, JHEP06 (2017) 090 [arXiv:1612.08088] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  45. [45]

    O. DeWolfe, S.S. Gubser and C. Rosen, Dynamic critical phenomena at a holographic critical point, Phys. Rev.D 84 (2011) 126014 [arXiv:1108.2029] [INSPIRE].

    ADS  Google Scholar 

  46. [46]

    M. Natsuume and T. Okamura, Dynamic universality class of large-N gauge theories, Phys. Rev.D 83 (2011) 046008 [arXiv:1012.0575] [INSPIRE].

  47. [47]

    R. Baier et al., Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP04 (2008) 100 [arXiv:0712.2451] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  48. [48]

    P. Romatschke, Relativistic viscous fluid dynamics and non-equilibrium entropy, Class. Quant. Grav.27 (2010) 025006 [arXiv:0906.4787] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  49. [49]

    I. Muller, Zum paradoxon der warmeleitungstheorie, Z. Phys.198 (1967) 329 [INSPIRE].

    ADS  Article  Google Scholar 

  50. [50]

    W. Israel and J.M. Stewart, Transient relativistic thermodynamics and kinetic theory, Annals Phys.118 (1979) 341 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  51. [51]

    W. Israel, Nonstationary irreversible thermodynamics: a causal relativistic theory, Annals Phys.100 (1976) 310 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  52. [52]

    G.S. Denicol, H. Niemi, E. Molnar and D.H. Rischke, Derivation of transient relativistic fluid dynamics from the Boltzmann equation, Phys. Rev.D 85 (2012) 114047 [Erratum ibid.D 91 (2015) 039902] [arXiv:1202.4551] [INSPIRE].

  53. [53]

    A. Buchel, Relaxation time of non-conformal plasma, Phys. Lett.B 681 (2009) 200 [arXiv:0908.0108] [INSPIRE].

    ADS  Article  Google Scholar 

  54. [54]

    W. Florkowski, R. Ryblewski and M. Strickland, Testing viscous and anisotropic hydrodynamics in an exactly solvable case, Phys. Rev.C 88 (2013) 024903 [arXiv:1305.7234] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maximilian Attems.

Additional information

ArXiv ePrint: 1905.12544

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Attems, M., Bea, Y., Casalderrey-Solana, J. et al. Dynamics of phase separation from holography. J. High Energ. Phys. 2020, 106 (2020). https://doi.org/10.1007/JHEP01(2020)106

Download citation

Keywords

  • Gauge-gravity correspondence
  • Holography and quark-gluon plasmas
  • AdS- CFT Correspondence