Approximate symmetries and gravity

  • 16 Accesses


There are strong reasons to believe that global symmetries of quantum theories cannot be exact in the presence of gravity. While this has been argued at the qualitative level, establishing a quantitative statement is more challenging. In this work we take new steps towards quantifying symmetry violation in EFTs with gravity. First, we evaluate global charge violation by microscopic black holes present in a thermal system, which represents an irreducible, universal effect at finite temperature. Second, based on general QFT considerations, we propose that local symmetry-violating processes should be faster than black hole-induced processes at any sub-Planckian temperature. Such a proposal can be seen as part of the “swampland” program to constrain EFTs emerging from quantum gravity. Considering an EFT perspective, we formulate a con- jecture which requires the existence of operators violating global symmetry and places quantitative bounds on them. We study the interplay of our conjecture with emergent symmetries in QFT. In models where gauged U(1)’s enforce accidental symmetries, we find that constraints from the Weak Gravity Conjecture can ensure that our conjecture is satisfied. We also study the consistency of the conjecture with QFT models of emergent symmetries such as extradimensional localization, the Froggatt-Nielsen mechanism, and the clockwork mechanism.

A preprint version of the article is available at ArXiv.


  1. [1]

    T. Banks and N. Seiberg, Symmetries and strings in field theory and gravity, Phys. Rev.D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].

  2. [2]

    N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP06 (2007) 060 [hep-th/0601001] [INSPIRE].

  3. [3]

    D. Harlow and H. Ooguri, Symmetries in quantum field theory and quantum gravity, arXiv:1810.05338 [INSPIRE].

  4. [4]

    D. Harlow and H. Ooguri, Constraints on symmetries from holography, Phys. Rev. Lett.122 (2019) 191601 [arXiv:1810.05337] [INSPIRE].

  5. [5]

    S.B. Giddings and A. Strominger, Axion induced topology change in quantum gravity and string theory, Nucl. Phys.B 306 (1988) 890 [INSPIRE].

  6. [6]

    S.-J. Rey, The axion dynamics in wormhole background, Phys. Rev.D 39 (1989) 3185 [INSPIRE].

  7. [7]

    R. Kallosh, A.D. Linde, D.A. Linde and L. Susskind, Gravity and global symmetries, Phys. Rev.D 52 (1995) 912 [hep-th/9502069] [INSPIRE].

  8. [8]

    R. Alonso and A. Urbano, Wormholes and masses for Goldstone bosons, JHEP02 (2019) 136 [arXiv:1706.07415] [INSPIRE].

  9. [9]

    S.R. Coleman, Black holes as red herrings: topological fluctuations and the loss of quantum coherence, Nucl. Phys.B 307 (1988) 867 [INSPIRE].

  10. [10]

    S.B. Giddings and A. Strominger, Loss of incoherence and determination of coupling constants in quantum gravity, Nucl. Phys.B 307 (1988) 854 [INSPIRE].

  11. [11]

    L.F. Abbott and M.B. Wise, Wormholes and global symmetries, Nucl. Phys.B 325 (1989) 687 [INSPIRE].

  12. [12]

    S.R. Coleman, Why there is nothing rather than something: a theory of the cosmological constant, Nucl. Phys.B 310 (1988) 643 [INSPIRE].

  13. [13]

    A. Hebecker, T. Mikhail and P. Soler, Euclidean wormholes, baby universes and their impact on particle physics and cosmology, Front. Astron. Space Sci.5 (2018) 35 [arXiv:1807.00824] [INSPIRE].

  14. [14]

    T. Rudelius, Constraints on axion inflation from the weak gravity conjecture, JCAP09 (2015) 020 [arXiv:1503.00795] [INSPIRE].

  15. [15]

    J. Brown, W. Cottrell, G. Shiu and P. Soler, Fencing in the swampland: quantum gravity constraints on large field inflation, JHEP10 (2015) 023 [arXiv:1503.04783] [INSPIRE].

  16. [16]

    B. Heidenreich, M. Reece and T. Rudelius, Weak gravity strongly constrains large-field axion inflation, JHEP12 (2015) 108 [arXiv:1506.03447] [INSPIRE].

  17. [17]

    A. Hebecker and P. Henkenjohann, Gauge and gravitational instantons: from 3-forms and fermions to weak gravity and flat axion potentials, JHEP09 (2019) 038 [arXiv:1906.07728] [INSPIRE].

  18. [18]

    C. Vafa, The string landscape and the swampland, hep-th/0509212 [INSPIRE].

  19. [19]

    H. Ooguri and C. Vafa, On the geometry of the string landscape and the swampland, Nucl. Phys.B 766 (2007) 21 [hep-th/0605264] [INSPIRE].

  20. [20]

    E. Palti, The swampland: introduction and review, Fortsch. Phys.67 (2019) 1900037 [arXiv:1903.06239] [INSPIRE].

  21. [21]

    C. Cheung and G.N. Remmen, Naturalness and the weak gravity conjecture, Phys. Rev. Lett.113 (2014) 051601 [arXiv:1402.2287] [INSPIRE].

  22. [22]

    B. Heidenreich, M. Reece and T. Rudelius, Sharpening the weak gravity conjecture with dimensional reduction, JHEP02 (2016) 140 [arXiv:1509.06374] [INSPIRE].

  23. [23]

    B. Heidenreich, M. Reece and T. Rudelius, Evidence for a sublattice weak gravity conjecture, JHEP08 (2017) 025 [arXiv:1606.08437] [INSPIRE].

  24. [24]

    S. Andriolo, D. Junghans, T. Noumi and G. Shiu, A tower weak gravity conjecture from infrared consistency, Fortsch. Phys.66 (2018) 1800020 [arXiv:1802.04287] [INSPIRE].

  25. [25]

    Y. Grossman and M. Neubert, Neutrino masses and mixings in nonfactorizable geometry, Phys. Lett.B 474 (2000) 361 [hep-ph/9912408] [INSPIRE].

  26. [26]

    C.D. Froggatt and H.B. Nielsen, Hierarchy of quark masses, Cabibbo angles and CP-violation, Nucl. Phys.B 147 (1979) 277 [INSPIRE].

  27. [27]

    G. Dvali, C. Gomez, R.S. Isermann, D. Lüst and S. Stieberger, Black hole formation and classicalization in ultra-Planckian 2 → N scattering, Nucl. Phys.B 893 (2015) 187 [arXiv:1409.7405] [INSPIRE].

  28. [28]

    G. Dvali, Strong coupling and classicalization, Subnucl. Ser.53 (2017) 189 [arXiv:1607.07422] [INSPIRE].

  29. [29]

    D.J. Gross, M.J. Perry and L.G. Yaffe, Instability of flat space at finite temperature, Phys. Rev.D 25 (1982) 330 [INSPIRE].

  30. [30]

    E.R. Harrison, Normal modes of vibrations of the universe, Rev. Mod. Phys.39 (1967) 862 [INSPIRE].

  31. [31]

    J.D. Barrow, G.F.R. Ellis, R. Maartens and C.G. Tsagas, On the stability of the Einstein static universe, Class. Quant. Grav.20 (2003) L155 [gr-qc/0302094] [INSPIRE].

  32. [32]

    J.W. York Jr., Black hole thermodynamics and the Euclidean Einstein action, Phys. Rev.D 33 (1986) 2092 [INSPIRE].

  33. [33]

    T. Banks and W. Fischler, A model for high-energy scattering in quantum gravity, hep-th/9906038 [INSPIRE].

  34. [34]

    S.B. Giddings and S.D. Thomas, High-energy colliders as black hole factories: the end of short distance physics, Phys. Rev.D 65 (2002) 056010 [hep-ph/0106219] [INSPIRE].

  35. [35]

    S. Dimopoulos and G.L. Landsberg, Black holes at the LHC, Phys. Rev. Lett.87 (2001) 161602 [hep-ph/0106295] [INSPIRE].

  36. [36]

    J.A. Conley and T. Wizansky, Microscopic primordial black holes and extra dimensions, Phys. Rev.D 75 (2007) 044006 [hep-ph/0611091] [INSPIRE].

  37. [37]

    M. Borunda and M. Masip, Black hole gas in the early universe, JCAP01 (2010) 027 [arXiv:0910.4532] [INSPIRE].

  38. [38]

    T. Nakama and J. Yokoyama, Micro black holes formed in the early universe and their cosmological implications, Phys. Rev.D 99 (2019) 061303 [arXiv:1811.05049] [INSPIRE].

  39. [39]

    T. Piran and R.M. Wald, Rate of black hole formation in a thermal box, Phys. Lett.A 90 (1982) 20.

  40. [40]

    H.W. Braden, B.F. Whiting and J.W. York Jr., Density of states for the gravitational field in black hole topologies, Phys. Rev.D 36 (1987) 3614 [INSPIRE].

  41. [41]

    W.G. Unruh, Absorption cross-section of small black holes, Phys. Rev.D 14 (1976) 3251 [INSPIRE].

  42. [42]

    S.-J. Lee, W. Lerche and T. Weigand, Modular fluxes, elliptic genera and weak gravity conjectures in four dimensions, JHEP08 (2019) 104 [arXiv:1901.08065] [INSPIRE].

  43. [43]

    P. Saraswat, Weak gravity conjecture and effective field theory, Phys. Rev.D 95 (2017) 025013 [arXiv:1608.06951] [INSPIRE].

  44. [44]

    G. Dvali, M. Redi, S. Sibiryakov and A. Vainshtein, Gravity cutoff in theories with large discrete symmetries, Phys. Rev. Lett.101 (2008) 151603 [arXiv:0804.0769] [INSPIRE].

  45. [45]

    G. Dvali, Black holes and large N species solution to the hierarchy problem, Fortsch. Phys.58 (2010) 528 [arXiv:0706.2050] [INSPIRE].

  46. [46]

    N. Craig, I. Garcia Garcia and S. Koren, Discrete gauge symmetries and the weak gravity conjecture, JHEP05 (2019) 140 [arXiv:1812.08181] [INSPIRE].

  47. [47]

    K. Choi, H. Kim and S. Yun, Natural inflation with multiple sub-Planckian axions, Phys. Rev.D 90 (2014) 023545 [arXiv:1404.6209] [INSPIRE].

  48. [48]

    T. Higaki and F. Takahashi, Natural and multi-natural inflation in axion landscape, JHEP07 (2014) 074 [arXiv:1404.6923] [INSPIRE].

  49. [49]

    K. Choi and S.H. Im, Realizing the relaxion from multiple axions and its UV completion with high scale supersymmetry, JHEP01 (2016) 149 [arXiv:1511.00132] [INSPIRE].

  50. [50]

    D.E. Kaplan and R. Rattazzi, Large field excursions and approximate discrete symmetries from a clockwork axion, Phys. Rev.D 93 (2016) 085007 [arXiv:1511.01827] [INSPIRE].

  51. [51]

    P.W. Graham, D.E. Kaplan and S. Rajendran, Cosmological relaxation of the electroweak scale, Phys. Rev. Lett.115 (2015) 221801 [arXiv:1504.07551] [INSPIRE].

  52. [52]

    G.R. Dvali, G. Gabadadze, M. Kolanovic and F. Nitti, Scales of gravity, Phys. Rev.D 65 (2002) 024031 [hep-th/0106058] [INSPIRE].

  53. [53]

    G. Veneziano, Large N bounds on and compositeness limit of, gauge and gravitational interactions, JHEP06 (2002) 051 [hep-th/0110129] [INSPIRE].

  54. [54]

    G. Dvali and M. Redi, Black hole bound on the number of species and quantum gravity at LHC, Phys. Rev.D 77 (2008) 045027 [arXiv:0710.4344] [INSPIRE].

  55. [55]

    S. Fichet and G. von Gersdorff, Anomalous gauge couplings from composite Higgs and warped extra dimensions, JHEP03 (2014) 102 [arXiv:1311.6815] [INSPIRE].

  56. [56]

    W.D. Goldberger and I.Z. Rothstein, High-energy field theory in truncated AdS backgrounds, Phys. Rev. Lett.89 (2002) 131601 [hep-th/0204160] [INSPIRE].

  57. [57]

    S. Fichet, Opacity and effective field theory in anti-de Sitter backgrounds, Phys. Rev.D 100 (2019) 095002 [arXiv:1905.05779] [INSPIRE].

  58. [58]

    P. Creminelli, A. Nicolis and R. Rattazzi, Holography and the electroweak phase transition, JHEP03 (2002) 051 [hep-th/0107141] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Correspondence to Sylvain Fichet.

Additional information

ArXiv ePrint: 1909.02002

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fichet, S., Saraswat, P. Approximate symmetries and gravity. J. High Energ. Phys. 2020, 88 (2020) doi:10.1007/JHEP01(2020)088

Download citation


  • Effective Field Theories
  • Global Symmetries
  • Black Holes