Advertisement

A subtraction scheme for massive QED

  • 12 Accesses

Abstract

We present an extension of the FKS subtraction scheme beyond next-to-leading order to deal with soft singularities in fully differential calculations within QED with mas- sive fermions. After a detailed discussion of the next-to-next-to-leading order case, we show how to extend the scheme to even higher orders in perturbation theory. As an application we discuss the computation of the next-to-next-to-leading order QED corrections to the muon decay and present differential results with full electron mass dependence.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys.B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].

  2. [2]

    R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP10 (2009) 003 [arXiv:0908.4272] [INSPIRE].

  3. [3]

    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys.B 485 (1997) 291 [Erratum ibid.B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].

  4. [4]

    S. Catani, S. Dittmaier, M.H. Seymour and Z. Trócsányi, The dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys.B 627 (2002) 189 [hep-ph/0201036] [INSPIRE].

  5. [5]

    A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Antenna subtraction at NNLO, JHEP09 (2005) 056 [hep-ph/0505111] [INSPIRE].

  6. [6]

    S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett.98 (2007) 222002 [hep-ph/0703012] [INSPIRE].

  7. [7]

    M. Czakon, A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett.B 693 (2010) 259 [arXiv:1005.0274] [INSPIRE].

  8. [8]

    R. Boughezal, K. Melnikov and F. Petriello, A subtraction scheme for NNLO computations, Phys. Rev.D 85 (2012) 034025 [arXiv:1111.7041] [INSPIRE].

  9. [9]

    J. Currie, E.W.N. Glover and S. Wells, Infrared structure at NNLO using antenna subtraction, JHEP04 (2013) 066 [arXiv:1301.4693] [INSPIRE].

  10. [10]

    M. Cacciari et al., Fully differential vector-boson-fusion Higgs production at next-to-next-to-leading order, Phys. Rev. Lett.115 (2015) 082002 [Erratum ibid.120 (2018) 139901] [arXiv:1506.02660] [INSPIRE].

  11. [11]

    F. Caola, K. Melnikov and R. R¨ontsch, Nested soft-collinear subtractions in NNLO QCD computations, Eur. Phys. J.C 77 (2017) 248 [arXiv:1702.01352] [INSPIRE].

  12. [12]

    L. Magnea et al., Local analytic sector subtraction at NNLO, JHEP12 (2018) 107 [Erratum ibid.06 (2019) 013][arXiv:1806.09570] [INSPIRE].

  13. [13]

    Working Group on Radiative Corrections and Monte Carlo Generators for Low Energies collaboration, Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data, Eur. Phys. J.C 66 (2010) 585 [arXiv:0912.0749] [INSPIRE].

  14. [14]

    C.M. Carloni Calame, M. Passera, L. Trentadue and G. Venanzoni, A new approach to evaluate the leading hadronic corrections to the muon g − 2, Phys. Lett.B 746 (2015) 325 [arXiv:1504.02228] [INSPIRE].

  15. [15]

    R.D. Bucoveanu and H. Spiesberger, Second-order leptonic radiative corrections for lepton-proton scattering, Eur. Phys. J.A 55 (2019) 57 [arXiv:1811.04970] [INSPIRE].

  16. [16]

    E. Barberio and Z. Was, PHOTOS: a universal Monte Carlo for QED radiative corrections. Version 2.0, Comput. Phys. Commun.79 (1994) 291 [INSPIRE].

  17. [17]

    U. Baur, S. Keller and D. Wackeroth, Electroweak radiative corrections to W boson production in hadronic collisions, Phys. Rev.D 59 (1999) 013002 [hep-ph/9807417] [INSPIRE].

  18. [18]

    C.M. Carloni Calame, G. Montagna, O. Nicrosini and M. Treccani, Higher order QED corrections to W boson mass determination at hadron colliders, Phys. Rev.D 69 (2004) 037301 [hep-ph/0303102] [INSPIRE].

  19. [19]

    G. Balossini et al., Matching perturbative and parton shower corrections to Bhabha process at flavour factories, Nucl. Phys.B 758 (2006) 227 [hep-ph/0607181] [INSPIRE].

  20. [20]

    K. Hamilton and P. Richardson, Simulation of QED radiation in particle decays using the YFS formalism, JHEP07 (2006) 010 [hep-ph/0603034] [INSPIRE].

  21. [21]

    M. Schonherr and F. Krauss, Soft photon radiation in particle decays in SHERPA, JHEP12 (2008) 018 [arXiv:0810.5071] [INSPIRE].

  22. [22]

    S. Jadach, W. Placzek and B.F.L. Ward, BHWIDE 1.00: O(α) YFS exponentiated Monte Carlo for Bhabha scattering at wide angles for LEP-1/SLC and LEP-2, Phys. Lett.B 390 (1997) 298 [hep-ph/9608412] [INSPIRE].

  23. [23]

    F. Krauss, J.M. Lindert, R. Linten and M. Schönherr, Accurate simulation of W , Z and Higgs boson decays in Sherpa, Eur. Phys. J.C 79 (2019) 143 [arXiv:1809.10650] [INSPIRE].

  24. [24]

    D.R. Yennie, S.C. Frautschi and H. Suura, The infrared divergence phenomena and high-energy processes, Annals Phys.13 (1961) 379 [INSPIRE].

  25. [25]

    I. Bierenbaum, M. Czakon and A. Mitov, The singular behavior of one-loop massive QCD amplitudes with one external soft gluon, Nucl. Phys.B 856 (2012) 228 [arXiv:1107.4384] [INSPIRE].

  26. [26]

    S. Catani and M. Grazzini, The soft gluon current at one loop order, Nucl. Phys.B 591 (2000) 435 [hep-ph/0007142] [INSPIRE].

  27. [27]

    J. Currie et al., N3LO corrections to jet production in deep inelastic scattering using the Projection-to-Born method, JHEP05 (2018) 209 [arXiv:1803.09973] [INSPIRE].

  28. [28]

    C. Gnendiger et al., To d, or not to d: recent developments and comparisons of regularization schemes, Eur. Phys. J.C 77 (2017) 471 [arXiv:1705.01827] [INSPIRE].

  29. [29]

    A. Broggio et al., SCET approach to regularization-scheme dependence of QCD amplitudes, JHEP01 (2016) 078 [arXiv:1506.05301] [INSPIRE].

  30. [30]

    C. Gnendiger, A. Signer and A. Visconti, Regularization-scheme dependence of QCD amplitudes in the massive case, JHEP10 (2016) 034 [arXiv:1607.08241] [INSPIRE].

  31. [31]

    T. Engel, C. Gnendiger, A. Signer and Y. Ulrich, Small-mass effects in heavy-to-light form factors, JHEP02 (2019) 118 [arXiv:1811.06461] [INSPIRE].

  32. [32]

    A. Mitov and S. Moch, The singular behavior of massive QCD amplitudes, JHEP05 (2007) 001 [hep-ph/0612149] [INSPIRE].

  33. [33]

    T. Becher and K. Melnikov, Two-loop QED corrections to Bhabha scattering, JHEP06 (2007) 084 [arXiv:0704.3582] [INSPIRE].

  34. [34]

    A.A. Penin, Two-loop photonic corrections to massive Bhabha scattering, Nucl. Phys.B 734 (2006) 185 [hep-ph/0508127] [INSPIRE].

  35. [35]

    S. Dittmaier, A general approach to photon radiation off fermions, Nucl. Phys.B 565 (2000) 69 [hep-ph/9904440] [INSPIRE].

  36. [36]

    T. Kinoshita and A. Sirlin, Radiative corrections to Fermi interactions, Phys. Rev.113 (1959) 1652 [INSPIRE].

  37. [37]

    R.E. Behrends, R.J. Finkelstein and A. Sirlin, Radiative corrections to decay processes, Phys. Rev.101 (1956) 866 [INSPIRE].

  38. [38]

    T. van Ritbergen and R.G. Stuart, On the precise determination of the Fermi coupling constant from the muon lifetime, Nucl. Phys.B 564 (2000) 343 [hep-ph/9904240] [INSPIRE].

  39. [39]

    A. Arbuzov, A. Czarnecki and A. Gaponenko, Muon decay spectrum: leading logarithmic approximation, Phys. Rev.D 65 (2002) 113006 [hep-ph/0202102] [INSPIRE].

  40. [40]

    A. Arbuzov and K. Melnikov, O(α2 ln(mμ/me) corrections to electron energy spectrum in muon decay, Phys. Rev.D 66 (2002) 093003 [hep-ph/0205172] [INSPIRE].

  41. [41]

    C. Anastasiou, K. Melnikov and F. Petriello, The electron energy spectrum in muon decay through O(α2 ), JHEP09 (2007) 014 [hep-ph/0505069] [INSPIRE].

  42. [42]

    A. Pak and A. Czarnecki, Mass effects in muon and semileptonic b → c decays, Phys. Rev. Lett.100 (2008) 241807 arXiv:0803.0960 [INSPIRE].

  43. [43]

    L.-B. Chen, Two-Loop master integrals for heavy-to-light form factors of two different massive fermions, JHEP02 (2018) 066 [arXiv:1801.01033] [INSPIRE].

  44. [44]

    T. van Ritbergen and R.G. Stuart, Hadronic contributions to the muon lifetime, Phys. Lett.B 437 (1998) 201 [hep-ph/9802341] [INSPIRE].

  45. [45]

    A.I. Davydychev, K. Schilcher and H. Spiesberger, Hadronic corrections at O(α2) to the energy spectrum of muon decay, Eur. Phys. J.C 19 (2001) 99 [hep-ph/0011221] [INSPIRE].

  46. [46]

    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys.105 (1993) 279.

  47. [47]

    H.H. Patel, Package-X: a Mathematica package for the analytic calculation of one-loop integrals, Comput. Phys. Commun.197 (2015) 276 [arXiv:1503.01469] [INSPIRE].

  48. [48]

    G.P. Lepage, VEGAS: an adaptive multidimensional integration program, CLNS-80/447 (1980).

  49. [49]

    A. Denner, S. Dittmaier and L. Hofer, Collier: a Fortran-based complex one-loop library in extended regularizations, Comput. Phys. Commun.212 (2017) 220 [arXiv:1604.06792] [INSPIRE].

  50. [50]

    G.M. Pruna, A. Signer and Y. Ulrich, Fully differential NLO predictions for the rare muon decay, Phys. Lett.B 765 (2017) 280 [arXiv:1611.03617] [INSPIRE].

  51. [51]

    L. Naterop, A. Signer and Y. Ulrich, handyG — Rapid numerical evaluation of generalised polylogarithms in Fortran, arXiv:1909.01656 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Correspondence to Y. Ulrich.

Additional information

ArXiv ePrint: 1909.10244

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Engel, T., Signer, A. & Ulrich, Y. A subtraction scheme for massive QED. J. High Energ. Phys. 2020, 85 (2020) doi:10.1007/JHEP01(2020)085

Download citation

Keywords

  • Precision QED
  • Perturbative QCD
  • Scattering Amplitudes
  • Effective Field Theories