\( \mathcal{N} \) -extended D = 4 supergravity, unconventional SUSY and graphene

  • 19 Accesses


We derive a 2+1 dimensional model with unconventional supersymmetry at the boundary of an AdS4\( \mathcal{N} \) -extended supergravity, generalizing previous results. The (unconventional) extended supersymmetry of the boundary model is instrumental in describing, within a top-down approach, the electronic properties of graphene-like 2D materials at the two Dirac points, K and K. The two valleys correspond to the two independent sectors of the OSp(p|2) × OSp(q|2) boundary model in the p = q case, which are related by a parity transformation. The Semenoff and Haldane-type masses entering the corresponding Dirac equations are identified with the torsion parameters of the substrate in the model.

A preprint version of the article is available at ArXiv.


  1. [1]

    A. Achúcarro and P.K. Townsend, A Chern-Simons Action for Three-Dimensional anti-de Sitter Supergravity Theories, Phys. Lett.B 180 (1986) 89 [INSPIRE].

  2. [2]

    D. Gaiotto and E. Witten, Janus Configurations, Chern-Simons Couplings, And The theta-Angle in N = 4 Super Yang-Mills Theory, JHEP06 (2010) 097 [arXiv:0804.2907] [INSPIRE].

  3. [3]

    A. Kapustin and N. Saulina, Chern-Simons-Rozansky-Witten topological field theory, Nucl. Phys.B 823 (2009) 403 [arXiv:0904.1447] [INSPIRE].

  4. [4]

    J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [Adv. Theor. Math. Phys.2 (1998) 231] [hep-th/9711200] [INSPIRE].

  5. [5]

    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

  6. [6]

    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE].

  7. [7]

    P.D. Álvarez, M. Valenzuela and J. Zanelli, Supersymmetry of a different kind, JHEP04 (2012) 058 [arXiv:1109.3944] [INSPIRE].

  8. [8]

    A. Guevara, P. Pais and J. Zanelli, Dynamical Contents of Unconventional Supersymmetry, JHEP08 (2016) 085 [arXiv:1606.05239] [INSPIRE].

  9. [9]

    A. Iorio and G. Lambiase, The Hawking-Unruh phenomenon on graphene, Phys. Lett.B 716 (2012) 334 [arXiv:1108.2340] [INSPIRE].

  10. [10]

    P.D. Álvarez, P. Pais and J. Zanelli, Unconventional supersymmetry and its breaking, Phys. Lett.B 735 (2014) 314 [arXiv:1306.1247] [INSPIRE].

  11. [11]

    Y.M.P. Gomes and J.A. Helayel-Neto, On a five-dimensional Chern-Simons AdS supergravity without gravitino, Phys. Lett.B 777 (2018) 275 [arXiv:1711.03220] [INSPIRE].

  12. [12]

    L. Andrianopoli, B.L. Cerchiai, R. D’Auria and M. Trigiante, Unconventional supersymmetry at the boundary of AdS4 supergravity, JHEP04 (2018) 007 [arXiv:1801.08081] [INSPIRE].

  13. [13]

    M. Ezawa, Supersymmetry and unconventional quantum Hall effect in graphene, Phys. Lett.A 372 (2008) 924 [cond-mat/0606084] [INSPIRE].

  14. [14]

    S.-S. Lee, Emergence of supersymmetry at a critical point of a lattice model, Phys. Rev.B 76 (2007) 075103 [cond-mat/0611658] [INSPIRE].

  15. [15]

    C.A. Dartora and G.G. Cabrera, Wess-Zumino supersymmetric phase and superconductivity in graphene, Phys. Lett.A 377 (2013) 907 [INSPIRE].

  16. [16]

    L. Andrianopoli, B.L. Cerchiai, P.A. Grassi and M. Trigiante, The Quantum Theory of Chern-Simons Supergravity, JHEP06 (2019) 036 [arXiv:1903.04431] [INSPIRE].

  17. [17]

    A. Iorio and P. Pais, (Anti-)de Sitter, Poincaré, Super symmetries and the two Dirac points of graphene, Annals Phys.398 (2018) 265 [arXiv:1807.08764] [INSPIRE].

  18. [18]

    L. Andrianopoli and R. D’Auria, N = 1 and N = 2 pure supergravities on a manifold with boundary, JHEP08 (2014) 012 [arXiv:1405.2010] [INSPIRE].

  19. [19]

    H.T. Nieh and M.L. Yan, Quantized Dirac Field in Curved Riemann-Cartan Background. 1. Symmetry Properties, Green’s Function, Annals Phys.138 (1982) 237 [INSPIRE].

  20. [20]

    O. Chandía and J. Zanelli, Topological invariants, instantons and chiral anomaly on spaces with torsion, Phys. Rev.D 55 (1997) 7580 [hep-th/9702025] [INSPIRE].

  21. [21]

    T.L. Hughes, R.G. Leigh and O. Parrikar, Torsional Anomalies, Hall Viscosity and Bulk-boundary Correspondence in Topological States, Phys. Rev.D 88 (2013) 025040 [arXiv:1211.6442] [INSPIRE].

  22. [22]

    O. Parrikar, T.L. Hughes and R.G. Leigh, Torsion, Parity-odd Response and Anomalies in Topological States, Phys. Rev.D 90 (2014) 105004 [arXiv:1407.7043] [INSPIRE].

  23. [23]

    K.S. Novoselov et al., Electric field effect in atomically thin carbon films, Science306 (2004) 666.

  24. [24]

    K.S. Novoselov et al., Two-dimensional atomic crystals, Proc. Nat. Acad. Sci.102 (2005) 10451.

  25. [25]

    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov and A.K. Geim, The electronic properties of graphene, Rev. Mod. Phys.81 (2009) 109 [arXiv:0709.1163] [INSPIRE].

  26. [26]

    M. Katsnelson and K.S. Novoselov, Graphene: New bridge between condensed matter physics and quantum electrodynamics, Solid State Commun.143 (2007) 3.

  27. [27]

    M.A.H. Vozmediano, M. Katsnelson and F. Guinea, Gauge fields in graphene, Phys. Rept.496 (2010) 109 [arXiv:1003.5179] [INSPIRE].

  28. [28]

    A. Cortijo and M.A.H. Vozmediano, Effects of topological defects and local curvature on the electronic properties of planar graphene, Nucl. Phys.B 763 (2007) 293 [Erratum ibid.B 807 (2009) 659] [cond-mat/0612374] [INSPIRE].

  29. [29]

    K.S. Novoselov et al., Two-dimensional gas of massless Dirac fermions in graphene, Nature438 (2005) 197 [cond-mat/0509330] [INSPIRE].

  30. [30]

    Y. Zhang, Y.-W. Tan, H.L. Stormer and P. Kim, Experimental observation of the quantum Hall effect and and Berry’s phase in graphene, Nature438 (2005) 201 [cond-mat/0509355] [INSPIRE].

  31. [31]

    V.P. Gusynin, S.G. Sharapov and J.P. Carbotte, Unusual microwave response of Dirac quasiparticles in graphene, Phys. Rev. Lett.96 (2006) 256802 [cond-mat/0603267] [INSPIRE].

  32. [32]

    A. Iorio and G. Lambiase, Quantum field theory in curved graphene spacetimes, Lobachevsky geometry, Weyl symmetry, Hawking effect and all that, Phys. Rev.D 90 (2014) 025006 [arXiv:1308.0265] [INSPIRE].

  33. [33]

    A.K. Geim and K.S. Novoselov, The rise of graphene, Nat. Mater.6 (2007) 183.

  34. [34]

    O. Boada, A. Celi, J.I. Latorre and M. Lewenstein, Dirac Equation For Cold Atoms In Artificial Curved Spacetimes, New J. Phys.13 (2011) 035002 [arXiv:1010.1716] [INSPIRE].

  35. [35]

    A. Iorio, Weyl-Gauge Symmetry of Graphene, Annals Phys.326 (2011) 1334 [arXiv:1007.5012] [INSPIRE].

  36. [36]

    A. Gallerati, Graphene properties from curved space Dirac equation, Eur. Phys. J. Plus134 (2019) 202 [arXiv:1808.01187] [INSPIRE].

  37. [37]

    M.F. Ciappina, A. Iorio, P. Pais and A. Zampeli, Torsion in quantum field theory through time-loops on Dirac materials, arXiv:1907.00023 [INSPIRE].

  38. [38]

    G.W. Semenoff, Condensed Matter Simulation of a Three-dimensional Anomaly, Phys. Rev. Lett.53 (1984) 2449 [INSPIRE].

  39. [39]

    G. Giovannetti, P.A. Khomyakov, G. Brocks, P.J. Kelly and J. van den Brink, Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations, Phys. Rev.B 76 (2007) 073103.

  40. [40]

    S.Y. Zhou et al., Substrate-induced bandgap opening in epitaxial graphene, Nat. Mater.6 (2007) 770.

  41. [41]

    F.D.M. Haldane, Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the ‘Parity Anomaly’, Phys. Rev. Lett.61 (1988) 2015 [INSPIRE].

  42. [42]

    R. Noris and L. Fatibene, Spin frame transformations and Dirac equations, arXiv:1910.04634 [INSPIRE].

  43. [43]

    G. Jotzu et al., Experimental realization of the topological haldane model with ultracold fermions, Nature515 (2014) 237.

  44. [44]

    H.-S. Kim and H.-Y. Kee, Realizing Haldane model in Fe-based honeycomb ferromagnetic insulators, npj Quantum Mater.2 (2017) 20.

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Correspondence to B.L. Cerchiai.

Additional information

ArXiv ePrint: 1910.03508

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Andrianopoli, L., Cerchiai, B., D’Auria, R. et al. \( \mathcal{N} \) -extended D = 4 supergravity, unconventional SUSY and graphene. J. High Energ. Phys. 2020, 84 (2020).

Download citation


  • Chern-Simons Theories
  • Holography and condensed matter physics (AdS/ CMT)
  • Supergravity Models