Advertisement

Bosonic sectorized strings and the (DF)2 theory

  • 5 Accesses

Abstract

In this work, we investigate the bosonic chiral string in the sectorized inter- pretation, computing its spectrum, kinetic action and 3-point amplitudes. As expected, the bosonic ambitwistor string is recovered in the tensionless limit. We also consider an extension of the bosonic model with current algebras. In that case, we compute the effective action and show that it is essentially the same as the action of the mass-deformed (DF )2 theory found by Johansson and Nohle. Aspects which might seem somewhat contrived in the original construction — such as the inclusion of a scalar transforming in some real representation of the gauge group — are shown to follow very naturally from the worldsheet formulation of the theory.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    F. Cachazo, S. He and E.Y. Yuan, Scattering of Massless Particles in Arbitrary Dimensions, Phys. Rev. Lett.113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].

  2. [2]

    F. Cachazo, S. He and E.Y. Yuan, Scattering of Massless Particles: Scalars, Gluons and Gravitons, JHEP07 (2014) 033 [arXiv:1309.0885] [INSPIRE].

  3. [3]

    L. Mason and D. Skinner, Ambitwistor strings and the scattering equations, JHEP07 (2014) 048 [arXiv:1311.2564] [INSPIRE].

  4. [4]

    N. Berkovits, Infinite Tension Limit of the Pure Spinor Superstring, JHEP03 (2014) 017 [arXiv:1311.4156] [INSPIRE].

  5. [5]

    F. Cachazo, S. He and E.Y. Yuan, Einstein-Yang-Mills Scattering Amplitudes From Scattering Equations, JHEP01 (2015) 121 [arXiv:1409.8256] [INSPIRE].

  6. [6]

    F. Cachazo, S. He and E.Y. Yuan, Scattering Equations and Matrices: From Einstein To Yang-Mills, DBI and NLSM, JHEP07 (2015) 149 [arXiv:1412.3479] [INSPIRE].

  7. [7]

    E. Casali, Y. Geyer, L. Mason, R. Monteiro and K.A. Roehrig, New Ambitwistor String Theories, JHEP11 (2015) 038 [arXiv:1506.08771] [INSPIRE].

  8. [8]

    I. Bandos, Twistor/ambitwistor strings and null-superstrings in spacetime of D = 4, 10 and 11 dimensions, JHEP09 (2014) 086 [arXiv:1404.1299] [INSPIRE].

  9. [9]

    W. Siegel, Amplitudes for left-handed strings, arXiv:1512.02569 [INSPIRE].

  10. [10]

    E. Casali and P. Tourkine, On the null origin of the ambitwistor string, JHEP11 (2016) 036 [arXiv:1606.05636] [INSPIRE].

  11. [11]

    Y.-t. Huang, W. Siegel and E.Y. Yuan, Factorization of Chiral String Amplitudes, JHEP09 (2016) 101 [arXiv:1603.02588] [INSPIRE].

  12. [12]

    R.L. Jusinskas, Notes on the ambitwistor pure spinor string, JHEP05 (2016) 116 [arXiv:1604.02915] [INSPIRE].

  13. [13]

    O. Chandía and B.C. Vallilo, Ambitwistor pure spinor string in a type-II supergravity background, JHEP06 (2015) 206 [arXiv:1505.05122] [INSPIRE].

  14. [14]

    T. Azevedo and R.L. Jusinskas, Connecting the ambitwistor and the sectorized heterotic strings, JHEP10 (2017) 216 [arXiv:1707.08840] [INSPIRE].

  15. [15]

    N. Berkovits and M. Lize, Field theory actions for ambitwistor string and superstring, JHEP09 (2018) 097 [arXiv:1807.07661] [INSPIRE].

  16. [16]

    B. Zwiebach, Closed string field theory: Quantum action and the B-V master equation, Nucl. Phys.B 390 (1993) 33 [hep-th/9206084] [INSPIRE].

  17. [17]

    H. Johansson and J. Nohle, Conformal Gravity from Gauge Theory, arXiv:1707.02965 [INSPIRE].

  18. [18]

    Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes, Phys. Rev.D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].

  19. [19]

    T. Azevedo and O.T. Engelund, Ambitwistor formulations of R2gravity and (DF )2gauge theories, JHEP11 (2017) 052 [arXiv:1707.02192] [INSPIRE].

  20. [20]

    T. Azevedo, M. Chiodaroli, H. Johansson and O. Schlotterer, Heterotic and bosonic string amplitudes via field theory, JHEP10 (2018) 012 [arXiv:1803.05452] [INSPIRE].

  21. [21]

    S. He, F. Teng and Y. Zhang, String amplitudes from field-theory amplitudes and vice versa, Phys. Rev. Lett.122 (2019) 211603 [arXiv:1812.03369] [INSPIRE].

  22. [22]

    S. He, F. Teng and Y. Zhang, String Correlators: Recursive Expansion, Integration-by-Parts and Scattering Equations, JHEP09 (2019) 085 [arXiv:1907.06041] [INSPIRE].

  23. [23]

    C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N-Point Superstring Disk Amplitude I. Pure Spinor Computation, Nucl. Phys.B 873 (2013) 419 [arXiv:1106.2645] [INSPIRE].

  24. [24]

    O. Hohm, W. Siegel and B. Zwiebach, Doubled αt-geometry, JHEP02 (2014) 065 [arXiv:1306.2970] [INSPIRE].

  25. [25]

    K. Lee, S.-J. Rey and J.A. Rosabal, A string theory which isn’t about strings, JHEP11 (2017) 172 [arXiv:1708.05707] [INSPIRE].

  26. [26]

    E. Casali, Y. Herfray and P. Tourkine, The complex null string, Galilean conformal algebra and scattering equations, JHEP10 (2017) 164 [arXiv:1707.09900] [INSPIRE].

  27. [27]

    M.M. Leite and W. Siegel, Chiral Closed strings: Four massless states scattering amplitude, JHEP01 (2017) 057 [arXiv:1610.02052] [INSPIRE].

  28. [28]

    E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys.252 (2004) 189 [hep-th/0312171] [INSPIRE].

  29. [29]

    N. Berkovits and E. Witten, Conformal supergravity in twistor-string theory, JHEP08 (2004) 009 [hep-th/0406051] [INSPIRE].

  30. [30]

    J.J.M. Carrasco, C.R. Mafra and O. Schlotterer, Abelian Z-theory: NLSM amplitudes and α′-corrections from the open string, JHEP06 (2017) 093 [arXiv:1608.02569] [INSPIRE].

  31. [31]

    C.R. Mafra and O. Schlotterer, Non-abelian Z -theory: Berends-Giele recursion for the α′-expansion of disk integrals, JHEP01 (2017) 031 [arXiv:1609.07078] [INSPIRE].

  32. [32]

    J.J.M. Carrasco, C.R. Mafra and O. Schlotterer, Semi-abelian Z-theory: N LSM + ϕ3from the open string, JHEP08 (2017) 135 [arXiv:1612.06446] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Correspondence to Thales Azevedo.

Additional information

ArXiv ePrint: 1908.11371

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Azevedo, T., Jusinskas, R.L. & Lize, M. Bosonic sectorized strings and the (DF)2 theory. J. High Energ. Phys. 2020, 82 (2020) doi:10.1007/JHEP01(2020)082

Download citation

Keywords

  • Bosonic Strings
  • BRST Quantization
  • String Field Theory
  • Scattering Amplitudes