Advertisement

Solution of the self-dual Φ4 QFT-model on four-dimensional Moyal space

  • Harald Grosse
  • Alexander HockEmail author
  • Raimar Wulkenhaar
Open Access
Regular Article - Theoretical Physics
  • 20 Downloads

Abstract

Previously the exact solution of the planar sector of the self-dual Φ4-model on 4-dimensional Moyal space was established up to the solution of a Fredholm integral equation. This paper solves, for any coupling constant λ > −\( \frac{1}{\uppi} \), the Fredholm equation in terms of a hypergeometric function and thus completes the construction of the planar sector of the model. We prove that the interacting model has spectral dimension 4 2 \( \frac{\arcsin \left(\uplambda \uppi \right)}{\uppi} \) for |λ| <\( \frac{1}{\uppi} \). It is this dimension drop which for λ > 0 avoids the triviality problem of the matricial \( {\varPhi}_4^4 \)-model. We also establish the power series approximation of the Fredholm solution to all orders in λ. The appearing functions are hyperlogarithms defined by iterated integrals, here of alternating letters 0 and 1. We identify the renormalisation parameter which gives the same normalisation as the ribbon graph expansion.

Keywords

Integrable Field Theories Matrix Models Non-Commutative Geometry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    W.E. Thirring, A soluble relativistic field theory?, Annals Phys.3 (1958) 91 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    J.S. Schwinger, Gauge invariance and mass. 2., Phys. Rev.128 (1962) 2425 [INSPIRE].
  3. [3]
    D.J. Gross and A. Neveu, Dynamical symmetry breaking in asymptotically free field theories, Phys. Rev.D 10 (1974) 3235 [INSPIRE].ADSGoogle Scholar
  4. [4]
    H. Grosse and R. Wulkenhaar, Renormalisation of 𝜙4theory on noncommutative4in the matrix base, Commun. Math. Phys.256 (2005) 305 [hep-th/0401128] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. Disertori, R. Gurau, J. Magnen and V. Rivasseau, Vanishing of beta function of non commutative \( {\varPhi}_4^4 \)theory to all orders, Phys. Lett.B 649 (2007) 95 [hep-th/0612251] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    E. Langmann and R.J. Szabo, Duality in scalar field theory on noncommutative phase spaces, Phys. Lett.B 533 (2002) 168 [hep-th/0202039] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    H. Grosse and R. Wulkenhaar, Self-dual noncommutative 𝜙4-theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory, Commun. Math. Phys.329 (2014) 1069 [arXiv:1205.0465] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    H. Grosse, A. Hock and R. Wulkenhaar, Solution of all quartic matrix models, arXiv:1906.04600 [INSPIRE].
  9. [9]
    I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series, and products, seventh ed., Elsevier/Academic Press, Amsterdam, The Netherlands (2007).Google Scholar
  10. [10]
    S. Ponnusamy and M. Vuorinen, Asymptotic expansions and inequalities for hypergeometric function, Mathematika44 (1997) 278.MathSciNetCrossRefGoogle Scholar
  11. [11]
    F. Tricomi, Integral Equations, Dover Publications, New York, U.S.A., (1985).Google Scholar
  12. [12]
    E. Panzer and R. Wulkenhaar, Lambert-W solves the noncommutative Φ4-model, Commun. Math. Phys. (2019) [arXiv:1807.02945] [INSPIRE].
  13. [13]
    F.C.S. Brown, Multiple zeta values and periods of moduli spaces \( {\mathcal{M}}_{0,n} \), Annales Sci. Ecole Norm. Sup.42 (2009) 371 [math/0606419].
  14. [14]
    E. Panzer, Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals, Comput. Phys. Commun.188 (2015) 148 [arXiv:1403.3385] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J. de Jong, A. Hock and R. Wulkenhaar, Catalan tables and a recursion relation in noncommutative quantum field theory, arXiv:1904.11231.
  16. [16]
    H. Grosse, A. Hock and R. Wulkenhaar, A Laplacian to compute intersection numbers on \( {\overline{\mathcal{M}}}_{g,n} \)and correlation functions in NCQFT, arXiv:1903.12526 [INSPIRE].

Copyright information

© The Author(s) 2020

Authors and Affiliations

  1. 1.Fakultät für PhysikUniversität WienViennaAustria
  2. 2.Mathematisches Institut der Westfälischen Wilhelms-UniversitätMünsterGermany
  3. 3.Erwin Schrödinger International Institute for Mathematics and PhysicsUniversity of ViennaViennaAustria

Personalised recommendations