Advertisement

Completing the scalar and fermionic universal one-loop effective action

  • Michael Krämer
  • Benjamin SummEmail author
  • Alexander Voigt
Open Access
Regular Article - Theoretical Physics
  • 9 Downloads

Abstract

We extend the known Universal One-Loop Effective Action (UOLEA) by all operators which involve scalars and fermions, not including contributions arising from open covariant derivatives. Our generic analytic expressions for the one-loop Wilson coefficients of effective operators up to dimension six allow for an application of the UOLEA to a broader class of UV-complete models. We apply our generic results to various effective theories of supersymmetric models, where different supersymmetric particles are integrated out at a high mass scale.

Keywords

Effective Field Theories Beyond Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett.B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    Muon g-2 collaboration, Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev.D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
  4. [4]
    F. Jegerlehner, The muon g − 2 in progress, Acta Phys. Polon.B 49 (2018) 1157 [arXiv:1804.07409] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    H.E. Haber and G.L. Kane, The search for supersymmetry: probing physics beyond the standard model, Phys. Rept.117 (1985) 75 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    B.C. Allanach and A. Voigt, Uncertainties in the lightest C P even Higgs boson mass prediction in the minimal supersymmetric standard model: fixed order versus effective field theory prediction, Eur. Phys. J.C 78 (2018) 573 [arXiv:1804.09410] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    E. Bagnaschi et al., MSSM Higgs boson searches at the LHC: benchmark scenarios for run 2 and beyond, Eur. Phys. J.C 79 (2019) 617 [arXiv:1808.07542] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A. Drozd, J. Ellis, J. Quevillon and T. You, The universal one-loop effective action, JHEP03 (2016) 180 [arXiv:1512.03003] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    S.A.R. Ellis, J. Quevillon, T. You and Z. Zhang, Extending the universal one-loop effective action: heavy-light coefficients, JHEP08 (2017) 054 [arXiv:1706.07765] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    B. Summ and A. Voigt, Extending the universal one-loop effective action by regularization scheme translating operators, JHEP08 (2018) 026 [arXiv:1806.05171] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M.K. Gaillard, The Effective One Loop Lagrangian With Derivative Couplings, Nucl. Phys.B 268 (1986) 669 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    O. Cheyette, Effective action for the standard model with large Higgs mass, Nucl. Phys.B 297 (1988) 183 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    N. Haba, K. Kaneta, S. Matsumoto and T. Nabeshima, A simple method of calculating effective operators, Acta Phys. Polon.B 43 (2012) 405 [arXiv:1106.6106] [INSPIRE].CrossRefGoogle Scholar
  14. [14]
    B. Henning, X. Lu and H. Murayama, How to use the Standard Model effective field theory, JHEP01 (2016) 023 [arXiv:1412.1837] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    B. Henning, X. Lu and H. Murayama, One-loop matching and running with covariant derivative expansion, JHEP01 (2018) 123 [arXiv:1604.01019] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    S.A.R. Ellis, J. Quevillon, T. You and Z. Zhang, Mixed heavy–light matching in the universal one-loop effective action, Phys. Lett.B 762 (2016) 166 [arXiv:1604.02445] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J. Fuentes-Martin, J. Portoles and P. Ruiz-Femenia, Integrating out heavy particles with functional methods: a simplified framework, JHEP09 (2016) 156 [arXiv:1607.02142] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    Z. Zhang, Covariant diagrams for one-loop matching, JHEP05 (2017) 152 [arXiv:1610.00710] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    F. Staub, From superpotential to model files for FeynArts and CalcHep/CompHEP, Comput. Phys. Commun.181 (2010) 1077 [arXiv:0909.2863] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    F. Staub, Automatic calculation of supersymmetric renormalization group equations and self energies, Comput. Phys. Commun.182 (2011) 808 [arXiv:1002.0840] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    F. Staub, SARAH 3.2: Dirac gauginos, UFO output and more, Comput. Phys. Commun.184 (2013) 1792 [arXiv:1207.0906] [INSPIRE].
  22. [22]
    F. Staub, SARAH 4: a tool for (not only SUSY) model builders, Comput. Phys. Commun.185 (2014) 1773 [arXiv:1309.7223] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    P. Athron et al., FlexibleSUSY — A spectrum generator generator for supersymmetric models, Comput. Phys. Commun.190 (2015) 139 [arXiv:1406.2319] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    P. Athron et al., FlexibleSUSY 2.0: extensions to investigate the phenomenology of SUSY and non-SUSY models, Comput. Phys. Commun.230 (2018) 145 [arXiv:1710.03760] [INSPIRE].
  25. [25]
    S. Das Bakshi, J. Chakrabortty and S.K. Patra, CoDEx: Wilson coefficient calculator connecting SMEFT to UV theory, Eur. Phys. J.C 79 (2019) 21 [arXiv:1808.04403] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S. Das Bakshi, J. Chakrabortty and S.K. Patra, CoDEx: BSM physics being realised as an SMEFT, in Theory report on the 11th FCC-ee workshop, A Blondel et al. eds., arXiv:1905.05078.
  27. [27]
    R.D. Ball, Chiral gauge theory, Phys. Rept.182 (1989) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys.B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].
  29. [29]
    B. Jantzen, Foundation and generalization of the expansion by regions, JHEP12 (2011) 076 [arXiv:1111.2589] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    C.G. Callan Jr., Broken scale invariance in scalar field theory, Phys. Rev.D 2 (1970) 1541 [INSPIRE].ADSGoogle Scholar
  31. [31]
    K. Symanzik, Small distance behavior in field theory and power counting, Commun. Math. Phys.18 (1970) 227 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    E. Bagnaschi, G.F. Giudice, P. Slavich and A. Strumia, Higgs mass and unnatural supersymmetry, JHEP09 (2014) 092 [arXiv:1407.4081] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    W. Siegel, Supersymmetric dimensional regularization via dimensional reduction, Phys. Lett.B 84 (1979) 193.ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    C.G. Bollini and J.J. Giambiagi, Dimensional renormalization: the number of dimensions as a regularizing parameter, Nuovo Cim.B 12 (1972) 20 [INSPIRE].Google Scholar
  35. [35]
    J.F. Ashmore, A method of gauge invariant regularization, Lett. Nuovo Cim.4 (1972) 289 [INSPIRE].CrossRefGoogle Scholar
  36. [36]
    G.M. Cicuta and E. Montaldi, Analytic renormalization via continuous space dimension, Lett. Nuovo Cim.4 (1972) 329 [INSPIRE].CrossRefGoogle Scholar
  37. [37]
    G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys.B 44 (1972) 189 [INSPIRE].
  38. [38]
    G. ’t Hooft, Dimensional regularization and the renormalization group, Nucl. Phys.B 61 (1973) 455 [INSPIRE].
  39. [39]
    D. Stöckinger, Regularization by dimensional reduction: consistency, quantum action principle and supersymmetry, JHEP03 (2005) 076 [hep-ph/0503129] [INSPIRE].
  40. [40]
    E. Bagnaschi, J. Pardo Vega and P. Slavich, Improved determination of the Higgs mass in the MSSM with heavy superpartners, Eur. Phys. J.C 77 (2017) 334 [arXiv:1703.08166] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    R. Huo, Effective field theory of integrating out sfermions in the MSSM: complete one-loop analysis, Phys. Rev.D 97 (2018) 075013 [arXiv:1509.05942] [INSPIRE].
  42. [42]
    J. Aebischer, A. Crivellin, C. Greub and Y. Yamada, The MSSM without gluinos; an effective field theory for the stop sector, Eur. Phys. J.C 77 (2017) 740 [arXiv:1703.08061] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    I. Jack et al., Decoupling of the epsilon scalar mass in softly broken supersymmetry, Phys. Rev.D 50 (1994) R5481 [hep-ph/9407291] [INSPIRE].
  44. [44]
    R. Delbourgo and V.B. Prasad, Supersymmetry in the four-dimensional limit, J. Phys.G 1 (1975) 377 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    D.M. Capper, D.R.T. Jones and P. van Nieuwenhuizen, Regularization by dimensional reduction of supersymmetric and nonsupersymmetric gauge theories, Nucl. Phys.B 167 (1980) 479 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    D. Stöckinger and J. Unger, Three-loop MSSM Higgs-boson mass predictions and regularization by dimensional reduction, Nucl. Phys.B 935 (2018) 1 [arXiv:1804.05619] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2020

Authors and Affiliations

  • Michael Krämer
    • 1
  • Benjamin Summ
    • 1
    Email author
  • Alexander Voigt
    • 1
  1. 1.Institute for Theoretical Particle Physics and CosmologyRWTH Aachen UniversityAachenGermany

Personalised recommendations