Horizon constraints on holographic Green’s functions

  • Mike Blake
  • Richard A. DavisonEmail author
  • David Vegh
Open Access
Regular Article - Theoretical Physics


We explore a new class of general properties of thermal holographic Green’s functions that can be deduced from the near-horizon behaviour of classical perturbations in asymptotically anti-de Sitter spacetimes. We show that at negative imaginary Matsubara frequencies and appropriate complex values of the wavenumber the retarded Green’s functions of generic operators are not uniquely defined, due to the lack of a unique ingoing solution for the bulk perturbations. From a boundary perspective these ‘pole-skipping’ points correspond to locations in the complex frequency and momentum planes at which a line of poles of the retarded Green’s function intersects with a line of zeroes. As a consequence the dispersion relations of collective modes in the boundary theory at energy scales ω ∼ T are directly constrained by the bulk dynamics near the black-brane horizon. For the case of conserved U (1) current and energy-momentum tensor operators we give examples where the dispersion relations of hydrodynamic modes pass through a succession of pole- skipping points as real wavenumber is increased. We discuss implications of our results for transport, hydrodynamics and quantum chaos in holographic systems.


AdS-CFT Correspondence Gauge-gravity correspondence Holography and condensed matter physics (AdS/CMT) Holography and quark-gluon plasmas 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP09 (2002) 042 [hep-th/0205051] [INSPIRE].
  2. [2]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [Adv. Theor. Math. Phys.2 (1998) 231] [hep-th/9711200] [INSPIRE].
  3. [3]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [INSPIRE].
  4. [4]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE].
  5. [5]
    G.T. Horowitz and V.E. Hubeny, Quasinormal modes of AdS black holes and the approach to thermal equilibrium, Phys. Rev.D 62 (2000) 024027 [hep-th/9909056] [INSPIRE].
  6. [6]
    C.P. Herzog and D.T. Son, Schwinger-Keldysh propagators from AdS/CFT correspondence, JHEP03 (2003) 046 [hep-th/0212072] [INSPIRE].
  7. [7]
    K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality, Phys. Rev. Lett.101 (2008) 081601 [arXiv:0805.0150] [INSPIRE].
  8. [8]
    K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality: prescription, renormalization and examples, JHEP05 (2009) 085 [arXiv:0812.2909] [INSPIRE].
  9. [9]
    D.T. Son and D. Teaney, Thermal noise and stochastic strings in AdS/CFT, JHEP07 (2009) 021 [arXiv:0901.2338] [INSPIRE].
  10. [10]
    P. Glorioso, M. Crossley and H. Liu, A prescription for holographic Schwinger-Keldysh contour in non-equilibrium systems, arXiv:1812.08785 [INSPIRE].
  11. [11]
    H. Liu and J. Sonner, Holographic systems far from equilibrium: a review, arXiv:1810.02367 [INSPIRE].
  12. [12]
    P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett.94 (2005) 111601 [hep-th/0405231] [INSPIRE].
  13. [13]
    N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev.D 79 (2009) 025023 [arXiv:0809.3808] [INSPIRE].
  14. [14]
    M. Blake, R.A. Davison, S. Grozdanov and H. Liu, Many-body chaos and energy dynamics in holography, JHEP10 (2018) 035 [arXiv:1809.01169] [INSPIRE].
  15. [15]
    D.A. Roberts, D. Stanford and L. Susskind, Localized shocks, JHEP03 (2015) 051 [arXiv:1409.8180] [INSPIRE].
  16. [16]
    D.A. Roberts and B. Swingle, Lieb-Robinson bound and the butterfly effect in quantum field theories, Phys. Rev. Lett.117 (2016) 091602 [arXiv:1603.09298] [INSPIRE].
  17. [17]
    M. Blake, Universal Charge Diffusion and the Butterfly Effect in Holographic Theories, Phys. Rev. Lett.117 (2016) 091601 [arXiv:1603.08510] [INSPIRE].
  18. [18]
    S. Grozdanov, K. Schalm and V. Scopelliti, Black hole scrambling from hydrodynamics, Phys. Rev. Lett.120 (2018) 231601 [arXiv:1710.00921] [INSPIRE].
  19. [19]
    M. Blake, H. Lee and H. Liu, A quantum hydrodynamical description for scrambling and many-body chaos, JHEP10 (2018) 127 [arXiv:1801.00010] [INSPIRE].
  20. [20]
    S. Grozdanov, On the connection between hydrodynamics and quantum chaos in holographic theories with stringy corrections, JHEP01 (2019) 048 [arXiv:1811.09641] [INSPIRE].
  21. [21]
    S. Grozdanov, P.K. Kovtun, A.O. Starinets and P. Tadíc, The complex life of hydrodynamic modes, JHEP11 (2019) 097 [arXiv:1904.12862] [INSPIRE].
  22. [22]
    E.L. Ince, Ordinary differential equations, Dover Publications, New York, U.S.A. (1956), see section 16.4.Google Scholar
  23. [23]
    J. Morgan et al., Gravitational quasinormal modes of AdS black branes in d spacetime dimensions, JHEP09 (2009) 117 [arXiv:0907.5011] [INSPIRE].
  24. [24]
    F. Denef, S.A. Hartnoll and S. Sachdev, Quantum oscillations and black hole ringing, Phys. Rev.D 80 (2009) 126016 [arXiv:0908.1788] [INSPIRE].
  25. [25]
    P. Kovtun, Lectures on hydrodynamic fluctuations in relativistic theories, J. Phys.A 45 (2012) 473001 [arXiv:1205.5040] [INSPIRE].
  26. [26]
    P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev.D 72 (2005) 086009 [hep-th/0506184] [INSPIRE].
  27. [27]
    F.M. Haehl and M. Rozali, Effective field theory for chaotic CFTs, JHEP10 (2018) 118 [arXiv:1808.02898] [INSPIRE].
  28. [28]
    L. Iliesiu et al., The conformal bootstrap at finite temperature, JHEP10 (2018) 070 [arXiv:1802.10266] [INSPIRE].
  29. [29]
    Y. Gu, X.-L. Qi and D. Stanford, Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models, JHEP05 (2017) 125 [arXiv:1609.07832] [INSPIRE].
  30. [30]
    M. Crossley, P. Glorioso and H. Liu, Effective field theory of dissipative fluids, JHEP09 (2017) 095 [arXiv:1511.03646] [INSPIRE].
  31. [31]
    P. Glorioso, M. Crossley and H. Liu, Effective field theory of dissipative fluids (II): classical limit, dynamical KMS symmetry and entropy current, JHEP09 (2017) 096 [arXiv:1701.07817] [INSPIRE].
  32. [32]
    S. Grozdanov, P.K. Kovtun, A.O. Starinets and P. Tadíc, Convergence of the gradient expansion in hydrodynamics, Phys. Rev. Lett.122 (2019) 251601 [arXiv:1904.01018] [INSPIRE].
  33. [33]
    M. Blake, R.A. Davison and S. Sachdev, Thermal diffusivity and chaos in metals without quasiparticles, Phys. Rev.D 96 (2017) 106008 [arXiv:1705.07896] [INSPIRE].
  34. [34]
    M. Blake and A. Donos, Diffusion and chaos from near AdS2 horizons, JHEP02 (2017) 013 [arXiv:1611.09380] [INSPIRE].
  35. [35]
    M. Blake, Universal diffusion in incoherent black holes, Phys. Rev.D 94 (2016) 086014 [arXiv:1604.01754] [INSPIRE].
  36. [36]
    R.A. Davison, S.A. Gentle and B. Goutéraux, Slow relaxation and diffusion in holographic quantum critical phases, Phys. Rev. Lett.123 (2019) 141601 [arXiv:1808.05659] [INSPIRE].
  37. [37]
    R.A. Davison, S.A. Gentle and B. Goutéraux, Impact of irrelevant deformations on thermodynamics and transport in holographic quantum critical states, Phys. Rev.D 100 (2019) 086020 [arXiv:1812.11060] [INSPIRE].
  38. [38]
    S.A. Hartnoll, Theory of universal incoherent metallic transport, Nature Phys.11 (2015) 54 [arXiv:1405.3651] [INSPIRE].
  39. [39]
    A. Lucas and J. Steinberg, Charge diffusion and the butterfly effect in striped holographic matter, JHEP10 (2016) 143 [arXiv:1608.03286] [INSPIRE].
  40. [40]
    M. Baggioli, B. Goutéraux, E. Kiritsis and W.-J. Li, Higher derivative corrections to incoherent metallic transport in holography, JHEP03 (2017) 170 [arXiv:1612.05500] [INSPIRE].
  41. [41]
    A.A. Patel and S. Sachdev, Quantum chaos on a critical Fermi surface, Proc. Nat. Acad. Sci.114 (2017) 1844 [arXiv:1611.00003] [INSPIRE].
  42. [42]
    R.A. Davison et al., Thermoelectric transport in disordered metals without quasiparticles: The Sachdev-Ye-Kitaev models and holography, Phys. Rev.B 95 (2017) 155131 [arXiv:1612.00849] [INSPIRE].
  43. [43]
    Y. Werman, S.A. Kivelson and E. Berg, Quantum chaos in an electron-phonon bad metal, arXiv:1705.07895 [INSPIRE].
  44. [44]
    H. Guo, Y. Gu and S. Sachdev, Transport and chaos in lattice Sachdev-Ye-Kitaev models, Phys. Rev.B 100 (2019) 045140 [arXiv:1904.02174] [INSPIRE].
  45. [45]
    J. de Boer, M.P. Heller and N. Pinzani-Fokeeva, Holographic Schwinger-Keldysh effective field theories, JHEP05 (2019) 188 [arXiv:1812.06093] [INSPIRE].
  46. [46]
    N. Iqbal and H. Liu, Real-time response in AdS/CFT with application to spinors, Fortsch. Phys.57 (2009) 367 [arXiv:0903.2596] [INSPIRE].
  47. [47]
    A.P. Reynolds and S.F. Ross, Butterflies with rotation and charge, Class. Quant. Grav.33 (2016) 215008 [arXiv:1604.04099] [INSPIRE].
  48. [48]
    A. Štikonas, Scrambling time from local perturbations of the rotating BTZ black hole, JHEP02 (2019) 054 [arXiv:1810.06110] [INSPIRE].
  49. [49]
    R.R. Poojary, BTZ dynamics and chaos, arXiv:1812.10073 [INSPIRE].
  50. [50]
    V. Jahnke, K.-Y. Kim and J. Yoon, On the chaos bound in rotating black holes, JHEP05 (2019) 037 [arXiv:1903.09086] [INSPIRE].
  51. [51]
    A. Maassen van den Brink, Analytic treatment of black hole gravitational waves at the algebraically special frequency, Phys. Rev.D 62 (2000) 064009 [gr-qc/0001032] [INSPIRE].
  52. [52]
    D. Birmingham, Choptuik scaling and quasinormal modes in the AdS/CFT correspondence, Phys. Rev.D 64 (2001) 064024 [hep-th/0101194] [INSPIRE].
  53. [53]
    V. Cardoso and J.P.S. Lemos, Scalar, electromagnetic and Weyl perturbations of BTZ black holes: quasinormal modes, Phys. Rev.D 63 (2001) 124015 [gr-qc/0101052] [INSPIRE].
  54. [54]
    D. Birmingham, I. Sachs and S.N. Solodukhin, Conformal field theory interpretation of black hole quasinormal modes, Phys. Rev. Lett.88 (2002) 151301 [hep-th/0112055] [INSPIRE].
  55. [55]
    B.C. van Rees, Real-time gauge/gravity duality and ingoing boundary conditions, Nucl. Phys. Proc. Suppl.192-193 (2009) 193 [arXiv:0902.4010] [INSPIRE].
  56. [56]
    M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett.69 (1992) 1849 [hep-th/9204099] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev.D 48 (1993) 1506 [Erratum ibid.D 88 (2013) 069902] [gr-qc/9302012] [INSPIRE].
  58. [58]
    I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys.B 556 (1999) 89 [hep-th/9905104] [INSPIRE].
  59. [59]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys.217 (2001) 595 [hep-th/0002230] [INSPIRE].
  60. [60]
    C.P. Herzog, P. Kovtun, S. Sachdev and D.T. Son, Quantum critical transport, duality and M-theory, Phys. Rev.D 75 (2007) 085020 [hep-th/0701036] [INSPIRE].
  61. [61]
    W. Witczak-Krempa and S. Sachdev, Dispersing quasinormal modes in 2 + 1 dimensional conformal field theories, Phys. Rev.B 87 (2013) 155149 [arXiv:1302.0847] [INSPIRE].
  62. [62]
    T. Andrade, S.A. Gentle and B. Withers, Drude in D major, JHEP06 (2016) 134 [arXiv:1512.06263] [INSPIRE].
  63. [63]
    D.K. Brattan and S.A. Gentle, Shear channel correlators from hot charged black holes, JHEP04 (2011) 082 [arXiv:1012.1280] [INSPIRE].

Copyright information

© The Author(s) 2020

Authors and Affiliations

  1. 1.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.School of MathematicsUniversity of BristolBristolU.K.
  3. 3.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeU.K.
  4. 4.Department of Mathematics and Maxwell Institute for Mathematical SciencesHeriot-Watt UniversityEdinburghU.K.
  5. 5.Centre for Research in String Theory, School of Physics and AstronomyQueen Mary University of LondonLondonU.K.

Personalised recommendations