Advertisement

Leading multi-stress tensors and conformal bootstrap

  • Robin KarlssonEmail author
  • Manuela Kulaxizi
  • Andrei Parnachev
  • Petar Tadić
Open Access
Regular Article - Theoretical Physics

Abstract

Near lightcone correlators are dominated by operators with the lowest twist. We consider the contributions of such leading lowest twist multi-stress tensor operators to a heavy-heavy-light-light correlator in a CFT of any even dimensionality with a large central charge. An infinite number of such operators contribute, but their sum is described by a simple ansatz. We show that the coefficients in this ansatz can be determined recursively, thereby providing an operational procedure to compute them. This is achieved by bootstrapping the corresponding near lightcone correlator: conformal data for any minimal­ twist determines that for the higher minimal-twist and so on. To illustrate this procedure in four spacetime dimensions we determine the contributions of double- and triple-stress tensors. We compute the OPE coefficients; whenever results are available in the literature, we observe complete agreement. We also compute the contributions of double-stress tensors in six spacetime dimensions and determine the corresponding OPE coefficients. In all cases the results are consistent with the exponentiation of the near lightcone correlator. This is similar to the situation in two spacetime dimensions for the Virasoro vacuum block.

Keywords

AdS-CFT Correspondence Conformal Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    A.B. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory, JETP Lett.43 (1986) 730 [Pisma Zh. Eksp. Tear. Fiz.43 (1986) 565] [INSPIRE].
  2. [2]
    Z. Komargodski and A. Schwimmer, On Renormalization Group Flows in Four Dimensions, JHEP12 (2011) 099 [arXiv:1107.3987] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    D.M. Hofman and J. Maldacena, Conformal collider physics: Energy and charge correlations, JHEP05 (2008) 012 [arXiv:0803.1467] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    T. Hartman, S. Jain and S. Kundu, Causality Constraints in Conformal Field Theory, JHEP05 (2016) 099 [arXiv:1509.00014] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    D. Li, D. Meltzer and D. Poland, Conformal Collider Physics from the Lightcone Bootstrap, JHEP02 (2016) 143 [arXiv:1511.08025] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    Z. Komargodski, M. Kulaxizi, A. Parnachev and A. Zhiboedov, Conformal Field Theories and Deep Inelastic Scattering, Phys. Rev.D 95 (2017) 065011 [arXiv:1601.05453] [INSPIRE].
  7. [7]
    T. Hartman, S. Jain and S. Kundu, A New Spin on Causality Constraints, JHEP10 (2016) 141 [arXiv:1601.07904] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    D.M. Hofman, D. Li, D. Meltzer, D. Poland and F. Rejon-Barrera, A Proof of the Conformal Collider Bounds, JHEP06 (2016) 111 [arXiv:1603. 03771] [INSPIRE].
  9. [9]
    T. Faulkner, R.G. Leigh, O. Parrikar and H. Wang, Modular Hamiltonians for Deformed Half-Spaces and the Averaged Null Energy Condition, JHEP09 (2016) 038 [arXiv:1605.08072] [INSPIRE].
  10. [10]
    M. Kologlu, P. Kravchuk, D. Simmons-Duffin and A. Zhiboedov, The light-ray OPE and conformal colliders, arXiv:1905.01311 [INSPIRE].
  11. [11]
    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Universality of Long-Distance AdS Physics from the CFT Bootstrap, JHEP08 (2014) 145 [arXiv:1403.6829] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Virasoro Conformal Blocks and Thermality from Classical Background Fields, JHEP11 (2015) 200 [arXiv:1501.05315] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    E. Hijano, P. Kraus and R. Snively, Worldline approach to semi-classical conformal blocks, JHEP07 (2015) 131 [arXiv:1501.02260] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Semiclassical Virasoro blocks from AdS 3gravity, JHEP12 (2015) 077 [arXiv:1508.04987] [INSPIRE].ADSzbMATHGoogle Scholar
  15. [15]
    A.L. Fitzpatrick, J. Kaplan, M.T. Walters and J. Wang, Hawking from Catalan, JHEP05 (2016) 069 [arXiv:1510.00014] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    J. Cotler and K. Jensen, A theory of reparameterizations for AdS 3gravity, JHEP02 (2019) 079 [arXiv:1808.03263] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. Collier, Y. Gobeil, H. Maxfield and E. Perlmutter, Quantum Regge Trajectories and the Virasoro Analytic Bootstrap, JHEP05 (2019) 212 [arXiv:1811.05710] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    A.L. Fitzpatrick and J. Kaplan, Conformal Blocks Beyond the Semi-Classical Limit, JHEP05 (2016) 075 [arXiv:1512.03052] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    A.L. Fitzpatrick, J. Kaplan, D. Li and J. Wang, On information loss in AdS 3/CFT 2, JHEP05 (2016) 109 [arXiv:1603. 08925] [INSPIRE].
  20. [20]
    T. Anous, T. Hartman, A. Rovai and J. Sonner, Black Hole Collapse in the 1/c Expansion, JHEP07 (2016) 123 [arXiv:1603.04856] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    A.L. Fitzpatrick and J. Kaplan, On the Late-Time Behavior of Virasoro Blocks and a Classification of Semiclassical Saddles, JHEP04 (2017) 072 [arXiv:1609.07153] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    H. Chen, C. Hussong, J. Kaplan and D. Li, A Numerical Approach to Virasoro Blocks and the Information Paradox, JHEP09 (2017) 102 [arXiv:1703.09727] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    T. Faulkner and H. Wang, Probing beyond ETH at large c, JHEP06 (2018) 123 [arXiv:1712.03464] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    C.T. Asplund, A. Bernamonti, F. Galli and T. Hartman, Holographic Entanglement Entropy from 2d CFT: Heav y States and Local Quenches, JHEP 02 (2015) 171 [arXiv:1410.1392] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    P. Caputa, J. Simón, A. Štikonas and T. Takayanagi, Quantum Entanglement of Localized Excited States at Finite Temperature, JHEP01 (2015) 102 [arXiv:1410.2287] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    B. Chen and J.-q. Wu, Holographic Entanglement Entropy For a Large Class of States in 2D CFT, JHEP09 (2016) 015 [arXiv:1605.06753] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    B. Chen, J.-q. Wu and J.-j. Zhang, Holographic Description of 2D Conformal Block in Semi-classical Limit, JHEP10 (2016) 110 [arXiv:1609.00801] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    T. Hartman, Entanglement Entropy at Large Central Charge, arXiv:1303.6955 [INSPIRE].
  29. [29]
    T. Faulkner, The Entanglement Renyi Entropies of Disjoint Intervals in AdS/CFT, arXiv:1303.7221 [INSPIRE].
  30. [30]
    M. Kulaxizi, G.S. Ng and A. Parnachev, Black Holes, Heavy States, Phase Shift and Anomalous Dimensions, SciPost Phys.6 (2019) 065 [arXiv:1812.03120] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M. Beccaria, A. Fachechi and G. Macorini, Virasoro vacuum block at next-to-leading order in the heavy-light limit, JHEP02 (2016) 072 [arXiv:1511.05452] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    M. Kulaxizi, G.S. Ng and A. Parnachev, Subleading Eikonal, AdS/CFT and Double Stress Tensors, JHEP10 (2019) 107 [arXiv:1907.00867] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP12 (2008) 031 [arXiv:0807.0004] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    S. Rychkov, EPFL Lectures on Conformal Field Theory in D ≥ 3 Dimensions, SpringerBriefs in Physics Series, Springer, Cham Switzerland (2017) [arXiv:1601.05000] [INSPIRE].
  35. [35]
    D. Simmons-Duffin, The Conformal Bootstrap, in proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TAS Boulder, CO, U.S.A., 1–26 June 2015, pp. 1–74 [arXiv:1602.07982] [INSPIRE].
  36. [36]
    D. Poland, S. Rychkov and A. Vichi, The Conformal Bootstrap: Theory, Numerical Techniques and Applications, Rev. Mod. Phys.91 (2019) 015002 [arXiv:1805.04405] [INSPIRE].
  37. [37]
    A.L. Fitzpatrick and K.-W. Huang, Universal Lowest-Twist in CFTs from Holography, JHEP08 (2019) 138 [arXiv:1903.05306] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    Y.-Z. Li, Z.-F. Mai and H. Lü, Holographic OPE Coefficients from AdS Black Holes with Matters, JHEP09 (2019) 001 [arXiv:1905.09302] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    A.L. Fitzpatrick, K.-W. Huang and D. Li, Probing universalities in d > 2 CFTs: from black holes to shockwaves, JHEP11 (2019) 139 [arXiv:1907.10810] [INSPIRE].CrossRefGoogle Scholar
  40. [40]
    K.-W. Huang, Stress-tensor commutators in conformal field theories near the lightcone, Phys. Rev.D 100 (2019) 061701 [arXiv:1907.00599] [INSPIRE].
  41. [41]
    R. Karlsson, M. Kulaxizi, A. Parnachev and P. Tadić, Black Holes and Conformal Regge Bootstrap, J HEP10 (2019) 046 [arXiv:1904.00060] [INSPIRE].ADSzbMATHGoogle Scholar
  42. [42]
    A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The Analytic Bootstrap and AdS Superhorizon Locality, JHEP12 (2013) 004 [arXiv:1212.3616] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    Z. Komargodski and A. Zhiboedov, Convexity and Liberation at Large Spin, JHEP11 (2013) 140 [arXiv:1212.4103] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A.L. Fitzpatrick and J. Kaplan, Unitarity and the Holographic S-matrix, JHEP10 (2012) 032 [arXiv:1112.4845] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    L. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal Approximation in AdS/CFT: From Shock Waves to Four-Point Functions, JHEP08 (2007) 019 [hep-th/0611122] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    L. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal Approximation in AdS/CFT: Conformal Partial Waves and Finite N Four-Point Functions, Nucl. Phys.B 767 (2007) 327 [hep-th/0611123] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    L. Cornalba, M.S. Costa and J. Penedones, Eikonal approximation in AdS/CFT: Resumming the gravitational loop expansion, JHEP09 (2007) 037 [arXiv:0707.0120] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    L. Cornalba, M.S. Costa and J. Penedones, Eikonal Methods in AdS/CFT: BFKL Pomeron at Weak Coupling, JHEP06 (2008) 048 [arXiv:0801.3002] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    M.S. Costa, V. Goncalves and J. Penedones, Conformal Regge theory, JHEP12 (2012) 091 [arXiv:1209.4355] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2020

Authors and Affiliations

  • Robin Karlsson
    • 1
    Email author
  • Manuela Kulaxizi
    • 1
  • Andrei Parnachev
    • 1
  • Petar Tadić
    • 1
  1. 1.School of MathematicsTrinity College DublinDublin 2Ireland

Personalised recommendations