Advertisement

Emitted radiation and geometry

  • L. BianchiEmail author
  • M. Billò
  • F. Galvagno
  • A. Lerda
Open Access
Regular Article - Theoretical Physics

Abstract

In conformal \( \mathcal{N} \) = 2 Super Yang-Mills theory, the energy emitted by an accelerated heavy particle is computed by the one-point function of the stress tensor operator in the presence of a Wilson line. In this paper, we consider the theory on the ellipsoid and we prove a conjectured relation between the stress tensor one-point function and the first order expansion of the Wilson loop expectation value in the squashing parameter. To do this, we analyze the behavior of the Wilson loop for a small deformation of the background geometry and, at first order in the deformation, we fix the kinematics using defect CFT constraints. In the final part of the paper, we analyze the consequences of our results for the weak coupling perturbative expansion. In particular, comparing the weakly coupled matrix model with the ordinary Feynman diagram expansion, we find a natural transcendentality driven organization for the latter.

Keywords

Extended Supersymmetry Supersymmetric Gauge Theory Conformal Field Theory Wilson, ’t Hooft and Polyakov loops 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    D. Correa, J. Henn, J. Maldacena and A. Sever, An exact formula for the radiation of a moving quark in N = 4 super Yang-Mills, JHEP06 (2012) 048 [arXiv:1202.4455] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    B. Fiol, B. Garolera and A. Lewkowycz, Exact results for static and radiative fields of a quark in N = 4 super Yang-Mills, JHEP05 (2012) 093 [arXiv:1202.5292] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    D. Correa, J. Maldacena and A. Sever, The quark anti-quark potential and the cusp anomalous dimension from a TBA equation, JHEP08 (2012) 134 [arXiv:1203.1913] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    N. Drukker, Integrable Wilson loops, JHEP10 (2013) 135 [arXiv:1203.1617] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    A. Mikhailov, Nonlinear waves in AdS/CFT correspondence, hep-th/0305196 [INSPIRE].
  6. [6]
    C. Athanasiou, P.M. Chesler, H. Liu, D. Nickel and K. Rajagopal, Synchrotron radiation in strongly coupled conformal field theories, Phys. Rev.D 81 (2010) 126001 [Erratum ibid.D 84 (2011) 069901] [arXiv:1001.3880] [INSPIRE].
  7. [7]
    Y. Hatta, E. Iancu, A.H. Mueller and D.N. Triantafyllopoulos, Radiation by a heavy quark in N = 4 SYM at strong coupling, Nucl. Phys.B 850 (2011) 31 [arXiv:1102.0232] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    B. Fiol and B. Garolera, Energy Loss of an Infinitely Massive Half-Bogomol’nyi-Prasad-Sommerfeld Particle by Radiation to All Orders in 1/N , Phys. Rev. Lett.107 (2011) 151601 [arXiv:1106.5418] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    C.A. Agón, A. Guijosa and J.F. Pedraza, Radiation and a dynamical UV/IR connection in AdS/CFT, JHEP06 (2014) 043 [arXiv:1402.5961] [INSPIRE].
  10. [10]
    B. Fiol, A. Güijosa and J.F. Pedraza, Branes from Light: Embeddings and Energetics for Symmetric k-Quarks in \( \mathcal{N} \) = 4 SYM, JHEP01 (2015) 149 [arXiv:1410.0692] [INSPIRE].
  11. [11]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, \( \mathcal{N} \) = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP10 (2008) 091 [arXiv:0806.1218] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    N. Drukker et al., Roadmap on Wilson loops in 3d Chern-Simons-matter theories, arXiv:1910.00588 [INSPIRE].
  13. [13]
    N. Drukker, J. Plefka and D. Young, Wilson loops in 3-dimensional N = 6 supersymmetric Chern-Simons Theory and their string theory duals, JHEP11 (2008) 019 [arXiv:0809.2787] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    B. Chen and J.-B. Wu, Supersymmetric Wilson Loops in N = 6 Super Chern-Simons-matter theory, Nucl. Phys.B 825 (2010) 38 [arXiv:0809.2863] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    S.-J. Rey, T. Suyama and S. Yamaguchi, Wilson Loops in Superconformal Chern-Simons Theory and Fundamental Strings in Anti-de Sitter Supergravity Dual, JHEP03 (2009) 127 [arXiv:0809.3786] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    A. Lewkowycz and J. Maldacena, Exact results for the entanglement entropy and the energy radiated by a quark, JHEP05 (2014) 025 [arXiv:1312.5682] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  17. [17]
    N. Drukker and D. Trancanelli, A Supermatrix model for N = 6 super Chern-Simons-matter theory, JHEP02 (2010) 058 [arXiv:0912.3006] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    V. Forini, V.G.M. Puletti and O. Ohlsson Sax, The generalized cusp in AdS 4 × CP 3and more one-loop results from semiclassical strings, J. Phys.A 46 (2013) 115402 [arXiv:1204.3302] [INSPIRE].ADSzbMATHGoogle Scholar
  19. [19]
    D.H. Correa, J. Aguilera-Damia and G.A. Silva, Strings in AdS 4 × ℂℙ 3Wilson loops in \( \mathcal{N} \) = 6 super Chern-Simons-matter and bremsstrahlung functions, JHEP06 (2014) 139 [arXiv:1405.1396] [INSPIRE].ADSzbMATHGoogle Scholar
  20. [20]
    M.S. Bianchi, L. Griguolo, M. Leoni, S. Penati and D. Seminara, BPS Wilson loops and Bremsstrahlung function in ABJ(M): a two loop analysis, JHEP06 (2014) 123 [arXiv:1402.4128] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    L. Bianchi, L. Griguolo, M. Preti and D. Seminara, Wilson lines as superconformal defects in ABJM theory: a formula for the emitted radiation, JHEP10 (2017) 050 [arXiv:1706.06590] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    M.S. Bianchi, L. Griguolo, A. Mauri, S. Penati, M. Preti and D. Seminara, Towards the exact Bremsstrahlung function of ABJM theory, JHEP08 (2017) 022 [arXiv:1705.10780] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    L. Bianchi, M. Preti and E. Vescovi, Exact Bremsstrahlung functions in ABJM theory, JHEP07 (2018) 060 [arXiv:1802.07726] [INSPIRE].ADSMathSciNetGoogle Scholar
  24. [24]
    B. Fiol, E. Gerchkovitz and Z. Komargodski, Exact Bremsstrahlung Function in N = 2 Superconformal Field Theories, Phys. Rev. Lett.116 (2016) 081601 [arXiv:1510.01332] [INSPIRE].
  25. [25]
    L. Bianchi, M. Lemos and M. Meineri, Line Defects and Radiation in \( \mathcal{N} \) = 2 Conformal Theories, Phys. Rev. Lett.121 (2018) 141601 [arXiv:1805.04111] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    B. Fiol and J. Martínez-Montoya, On scalar radiation, arXiv:1907.08161 [INSPIRE].
  27. [27]
    V. Mitev and E. Pomoni, Exact Bremsstrahlung and Effective Couplings, JHEP06 (2016) 078 [arXiv:1511.02217] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    C. Gomez, A. Mauri and S. Penati, The Bremsstrahlung function of \( \mathcal{N} \) = 2 SCQCD, JHEP03 (2019) 122 [arXiv:1811.08437] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    N. Hama and K. Hosomichi, Seiberg-Witten Theories on Ellipsoids, JHEP09 (2012) 033 [arXiv:1206.6359] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  30. [30]
    J.K. Erickson, G.W. Semenoff and K. Zarembo, Wilson loops in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys.B 582 (2000) 155 [hep-th/0003055] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    N. Drukker and D.J. Gross, An Exact prediction of N = 4 SUSYM theory for string theory, J. Math. Phys.42 (2001) 2896 [hep-th/0010274] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  32. [32]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys.313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    K. Zarembo, Supersymmetric Wilson loops, Nucl. Phys.B 643 (2002) 157 [hep-th/0205160] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  34. [34]
    N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, More supersymmetric Wilson loops, Phys. Rev.D 76 (2007) 107703 [arXiv:0704.2237] [INSPIRE].ADSMathSciNetGoogle Scholar
  35. [35]
    N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, Supersymmetric Wilson loops on S 3, JHEP05 (2008) 017 [arXiv:0711.3226] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  36. [36]
    S. Giombi and V. Pestun, Correlators of local operators and 1/8 BPS Wilson loops on S 2from 2d YM and matrix models, JHEP10 (2010) 033 [arXiv:0906.1572] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  37. [37]
    A. Bassetto, L. Griguolo, F. Pucci, D. Seminara, S. Thambyahpillai and D. Young, Correlators of supersymmetric Wilson-loops, protected operators and matrix models in N = 4 SYM, JHEP08 (2009) 061 [arXiv:0905.1943] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    A. Bassetto, L. Griguolo, F. Pucci, D. Seminara, S. Thambyahpillai and D. Young, Correlators of supersymmetric Wilson loops at weak and strong coupling, JHEP03 (2010) 038 [arXiv:0912.5440] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  39. [39]
    S. Giombi and V. Pestun, Correlators of Wilson Loops and Local Operators from Multi-Matrix Models and Strings in AdS, JHEP01 (2013) 101 [arXiv:1207.7083] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  40. [40]
    M. Bonini, L. Griguolo and M. Preti, Correlators of chiral primaries and 1/8 BPS Wilson loops from perturbation theory, JHEP09 (2014) 083 [arXiv:1405.2895] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    S. Giombi and S. Komatsu, Exact Correlators on the Wilson Loop in \( \mathcal{N} \) = 4 SYM: Localization, Defect CFT and Integrability, JHEP05 (2018) 109 [Erratum ibid.11 (2018) 123] [arXiv:1802.05201] [INSPIRE].
  42. [42]
    S. Giombi and S. Komatsu, More Exact Results in the Wilson Loop Defect CFT: Bulk-Defect OPE, Nonplanar Corrections and Quantum Spectral Curve, J. Phys.A 52 (2019) 125401 [arXiv:1811.02369] [INSPIRE].ADSGoogle Scholar
  43. [43]
    P. Liendo, C. Meneghelli and V. Mitev, Bootstrapping the half-BPS line defect, JHEP10 (2018) 077 [arXiv:1806.01862] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  44. [44]
    S. Giombi, R. Roiban and A.A. Tseytlin, Half-BPS Wilson loop and AdS 2/CFT 1 , Nucl. Phys.B 922 (2017) 499 [arXiv:1706.00756] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  45. [45]
    M. Beccaria, S. Giombi and A.A. Tseytlin, Correlators on non-supersymmetric Wilson line in \( \mathcal{N} \) = 4 SYM and AdS 2/CFT 1 , JHEP05 (2019) 122 [arXiv:1903.04365] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  46. [46]
    A. Gimenez-Grau and P. Liendo, Bootstrapping line defects in \( \mathcal{N} \) = 2 theories, arXiv:1907.04345 [INSPIRE].
  47. [47]
    M. Baggio, V. Niarchos and K. Papadodimas, tt *equations, localization and exact chiral rings in 4d \( \mathcal{N} \) = 2 SCFTs, JHEP02 (2015) 122 [arXiv:1409.4212] [INSPIRE].
  48. [48]
    E. Gerchkovitz, J. Gomis and Z. Komargodski, Sphere Partition Functions and the Zamolodchikov Metric, JHEP11 (2014) 001 [arXiv:1405.7271] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  49. [49]
    M. Baggio, V. Niarchos and K. Papadodimas, On exact correlation functions in SU(N) \( \mathcal{N} \) = 2 superconformal QCD, JHEP11 (2015) 198 [arXiv:1508.03077] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  50. [50]
    M. Baggio, V. Niarchos, K. Papadodimas and G. Vos, Large-N correlation functions in \( \mathcal{N} \) = 2 superconformal QCD, JHEP01 (2017) 101 [arXiv:1610.07612] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  51. [51]
    E. Gerchkovitz, J. Gomis, N. Ishtiaque, A. Karasik, Z. Komargodski and S.S. Pufu, Correlation Functions of Coulomb Branch Operators, JHEP01 (2017) 103 [arXiv:1602.05971] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  52. [52]
    D. Rodriguez-Gomez and J.G. Russo, Large N Correlation Functions in Superconformal Field Theories, JHEP06 (2016) 109 [arXiv:1604.07416] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  53. [53]
    D. Rodriguez-Gomez and J.G. Russo, Operator mixing in large N superconformal field theories on S 4and correlators with Wilson loops, JHEP12 (2016) 120 [arXiv:1607.07878] [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
  54. [54]
    M. Billó, F. Fucito, A. Lerda, J.F. Morales, Y.S. Stanev and C. Wen, Two-point Correlators in N = 2 Gauge Theories, Nucl. Phys.B 926 (2018) 427 [arXiv:1705.02909] [INSPIRE].
  55. [55]
    A. Bourget, D. Rodriguez-Gomez and J.G. Russo, A limit for large R-charge correlators in \( \mathcal{N} \) = 2 theories, JHEP05 (2018) 074 [arXiv:1803.00580] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  56. [56]
    A. Bourget, D. Rodriguez-Gomez and J.G. Russo, Universality of Toda equation in \( \mathcal{N} \) = 2 superconformal field theories, JHEP02 (2019) 011 [arXiv:1810.00840] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  57. [57]
    M. Beccaria, On the large R-charge \( \mathcal{N} \) = 2 chiral correlators and the Toda equation, JHEP02 (2019) 009 [arXiv:1809.06280] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    M. Billó, F. Fucito, G.P. Korchemsky, A. Lerda and J.F. Morales, Two-point correlators in non-conformal \( \mathcal{N} \) = 2 gauge theories, JHEP05 (2019) 199 [arXiv:1901.09693] [INSPIRE].
  59. [59]
    M. Billó, F. Galvagno, P. Gregori and A. Lerda, Correlators between Wilson loop and chiral operators in \( \mathcal{N} \) = 2 conformal gauge theories, JHEP03 (2018) 193 [arXiv:1802.09813] [INSPIRE].
  60. [60]
    M. Beccaria, Double scaling limit of N = 2 chiral correlators with Maldacena-Wilson loop, JHEP02 (2019) 095 [arXiv:1810.10483] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  61. [61]
    M. Billò, F. Galvagno and A. Lerda, BPS Wilson loops in generic conformal \( \mathcal{N} \) = 2 SU(N) SYM theories, JHEP08 (2019) 108 [arXiv:1906.07085] [INSPIRE].
  62. [62]
    G. Festuccia and N. Seiberg, Rigid Supersymmetric Theories in Curved Superspace, JHEP06 (2011) 114 [arXiv:1105.0689] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  63. [63]
    C. Klare and A. Zaffaroni, Extended Supersymmetry on Curved Spaces, JHEP10 (2013) 218 [arXiv:1308.1102] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  64. [64]
    D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge, U.K. (2012) [INSPIRE].zbMATHCrossRefGoogle Scholar
  65. [65]
    K. Hosomichi, \( \mathcal{N} \) = 2 SUSY gauge theories on S 4 , J. Phys.A 50 (2017) 443010 [arXiv:1608.02962] [INSPIRE].ADSzbMATHGoogle Scholar
  66. [66]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys.7 (2003) 831 [hep-th/0206161] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  67. [67]
    M. Billò, V. Gon¸calves, E. Lauria and M. Meineri, Defects in conformal field theory, JHEP04 (2016) 091 [arXiv:1601.02883] [INSPIRE].
  68. [68]
    E. Lauria, M. Meineri and E. Trevisani, Spinning operators and defects in conformal field theory, JHEP08 (2019) 066 [arXiv:1807.02522] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  69. [69]
    V.K. Dobrev, V.B. Petkova, S.G. Petrova and I.T. Todorov, Dynamical Derivation of Vacuum Operator Product Expansion in Euclidean Conformal Quantum Field Theory, Phys. Rev.D 13 (1976) 887 [INSPIRE].ADSGoogle Scholar
  70. [70]
    L. Bianchi, S. Chapman, X. Dong, D.A. Galante, M. Meineri and R.C. Myers, Shape dependence of holographic Rényi entropy in general dimensions, JHEP11 (2016) 180 [arXiv:1607.07418] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  71. [71]
    L.S. Brown and J.P. Cassidy, Stress Tensors and their Trace Anomalies in Conformally Flat Space-Times, Phys. Rev.D 16 (1977) 1712 [INSPIRE].ADSGoogle Scholar
  72. [72]
    S.M. Kuzenko, Super-Weyl anomalies in N = 2 supergravity and (non)local effective actions, JHEP10 (2013) 151 [arXiv:1307.7586] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  73. [73]
    J. Gomis, P.-S. Hsin, Z. Komargodski, A. Schwimmer, N. Seiberg and S. Theisen, Anomalies, Conformal Manifolds and Spheres, JHEP03 (2016) 022 [arXiv:1509.08511] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  74. [74]
    D. Correa, J. Henn, J. Maldacena and A. Sever, The cusp anomalous dimension at three loops and beyond, JHEP05 (2012) 098 [arXiv:1203.1019] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  75. [75]
    R. Andree and D. Young, Wilson Loops in N = 2 Superconformal Yang-Mills Theory, JHEP09 (2010) 095 [arXiv:1007.4923] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  76. [76]
    N. Drukker, D.J. Gross and H. Ooguri, Wilson loops and minimal surfaces, Phys. Rev.D 60 (1999) 125006 [hep-th/9904191] [INSPIRE].ADSMathSciNetGoogle Scholar
  77. [77]
    A. Grozin, J.M. Henn, G.P. Korchemsky and P. Marquard, The three-loop cusp anomalous dimension in QCD and its supersymmetric extensions, JHEP01 (2016) 140 [arXiv:1510.07803] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  78. [78]
    A.M. Polyakov, Gauge Fields as Rings of Glue, Nucl. Phys.B 164 (1980) 171 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  79. [79]
    A.G. Grozin, Introduction to the heavy quark effective theory. Part 1, hep-ph/9908366 [INSPIRE].

Copyright information

© The Author(s) 2020

Authors and Affiliations

  1. 1.Center for Research in String Theory — School of Physics and AstronomyQueen Mary University of LondonLondonU.K.
  2. 2.Dipartimento di FisicaUniversità di TorinoTorinoItaly
  3. 3.I.N.F.N. — Sezione di TorinoTorinoItaly
  4. 4.Dipartimento di Scienze e Innovazione TecnologicaUniversità del Piemonte OrientaleAlessandriaItaly

Personalised recommendations