Advertisement

Flavored extended instanton in QCD

  • 15 Accesses

Abstract

We discuss new flavored space-like defects in confined QCD which can be considered as the Euclidean extended instantons carrying the topologically quantized currents. We focus on the simplest ld space-like defect -the S-Skyrmion solution extended in one space coordinate and localized in Euclidean time. It can be identified both in the holographic QCD and in the Chiral Perturbation Theory(ChPT). The Skyrmion charges get transformed into the corresponding currents for S-Skyrmion. The analogy with the Thouless pump and the quantum phase slip phenomena is mentioned.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    M. Gutperle and A. Strominger, Space-like branes, JHEP04 (2002) 018 [hep-th/0202210] [INSPIRE].

  2. [2]

    A. Sen, Rolling tachyon, JHEP04 (2002) 048 [hep-th/0203211] [INSPIRE].

  3. [3]

    A. Strominger, Open string creation by S branes, Conf. Proc.C 0208124 (2002) 20 [hep-th/0209090] [INSPIRE].

  4. [4]

    D. Gaiotto, N. Itzhaki and L. Rastelli, Closed strings as imaginary D-branes, Nucl. Phys.B 688 (2004) 70 [hep-th/0304192] [INSPIRE].

  5. [5]

    N.D. Lambert, H. Liu and J.M. Maldacena, Closed strings from decaying D-branes, JHEP03 (2007) 014 [hep-th/0303139] [INSPIRE].

  6. [6]

    K. Hashimoto, P.-M. Ho, S. Nagaoka and J.E. Wang, Time evolution via S-branes, Phys. Rev.D 68 (2003) 026007 [hep-th/0303172] [INSPIRE].

  7. [7]

    E. Witten, Baryons in the 1/ N expansion, Nucl. Phys.B 160 (1979) 57 [INSPIRE].

  8. [8]

    E. Witten, Global aspects of current algebra, Nucl. Phys.B 223 (1983) 422 [INSPIRE].

  9. [9]

    E. Witten, Current algebra, baryons and quark confinement, Nucl. Phys.B 223 (1983) 433 [INSPIRE].

  10. [10]

    M.F. Atiyah and N.S. Manton, Skyrmions from instantons, Phys. Lett.B 222 (1989) 438 [INSPIRE].

  11. [11]

    M. Atiyah and P. Sutcliffe, Skyrmions, instantons, mass and curvature, Phys. Lett.B 605 (2005) 106 [hep-th/0411052] [INSPIRE].

  12. [12]

    M. Eto, M. Nitta, K. Ohashi and D. Tong, Skyrmions from instantons inside domain walls, Fhys. Rev. Lett.95 (2005) 252003 [hep-th/0508130] [INSPIRE].

  13. [13]

    D.T. Son and M.A. Stephanov, QCD and dimensional deconstruction, Fhys. Rev.D 69 (2004) 065020 [hep-ph/0304182] [INSPIRE].

  14. [14]

    A. Gorsky and A. Krikun, Baryon as dyonic instanton, Fhys. Rev.D 86 (2012) 126005 [arXiv:1206.4515] [INSPIRE].

  15. [15]

    A. Gorsky, S.B. Gudnason and A. Krikun, Baryon and chiral symmetry breaking in holographic QCD, Fhys. Rev.D 91 (2015) 126008 [arXiv:1503.04820] [INSPIRE].

  16. [16]

    Z. Komargodski, Baryons as quantum Hall droplets, arXiv:1812.09253 [INSPIRE].

  17. [17]

    D.J. Thouless, Quantization of particle transport, Fhys. Rev.B 27 (1983) 6083.

  18. [18]

    M.H. Kolodrubetz, F. Nathan, S. Gazit, T. Morimoto and J.E. Moore, Topological Floquet- Thouless energy pump, Fhys. Rev. Lett.120 (2018) 150601.

  19. [19]

    B. Mera, K. Sacha and Y. Omar, Topologically protected quantization of work, Fhys. Rev. Lett.123 (2019) 020601.

  20. [20]

    A. Bezryadin, C.N. Lau and M. Tinkham, Quantum suppression of superconductivity in ultrathin nanowires, Nature404 (2000) 971.

  21. [21]

    V.I. Zakharov, Lower-dimension vacuum defects in lattice Yang-Mills theory, Fhys. Atom. Nucl.68 (2005) 573 [hep-ph/0410034] [INSPIRE].

  22. [22]

    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Fhys.2 (1998) 505 [hep-th/9803131] [INSPIRE].

  23. [23]

    T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Frog. Theor. Fhys.113 (2005) 843 [hep-th/0412141] [INSPIRE].

  24. [24]

    T. Sakai and S. Sugimoto, More on a holographic dual of QCD, Frog. Theor. Fhys.114 (2005) 1083 [hep-th/0507073] [INSPIRE].

  25. [25]

    H. Hata, T. Sakai, S. Sugimoto and S. Yamato, Baryons from instantons in holographic QCD, Frog. Theor. Fhys.117 (2007) 1157 [hep-th/0701280] [INSPIRE].

  26. [26]

    K. Hashimoto, T. Sakai and S. Sugimoto, Holographic baryons: static properties and form factors from gauge/ string duality, Frog. Theor. Fhys.120 (2008) 1093 [arXiv:0806.3122] [INSPIRE].

  27. [27]

    A. Pomarol and A. Wulzer, Stable skyrmions from e xtra dimensions, JHEF03 (2008) 051 [arXiv:0712.3276] [INSPIRE].

  28. [28]

    A. Pomarol and A. Wulzer, Baryon physics in holographic QCD, Nucl. Fhys.B 809 (2009) 347 [arXiv:0807.0316] [INSPIRE].

  29. [29]

    E. Witten, Baryons and branes in anti-d e Sitter space, JHEF07 (1998) 006 [hep-th/9805112] [INSPIRE].

  30. [30]

    K. Fukushima, D.E. Kharzeev and H.J. Warringa, The chiral magnetic effect, Fhys. Rev.D 78 (2008) 074033 [arXiv:0808.3382] [INSPIRE].

  31. [31]

    K. Fukushima and K. Mameda, Wess-Zumino- Witten action and photons from the chiral magnetic effect, Fhys. Rev.D 86 (2012) 071501 [arXiv:1206.3128] [INSPIRE].

  32. [32]

    V.A. Rubakov, Superheavy magnetic monopoles and proton decay, JETF Lett. 33 (1981) 644 [Fisma Zh. Eksp. Tear. Fiz.33 (1981) 658] [INSPIRE].

  33. [33]

    V.A. Rubakov, Adler-Bell-lackiw anomaly and fermion number breaking in the presence of a magnetic monopole, Nucl. Phys.B 203 (1982) 311 [INSPIRE].

  34. [34]

    C.G. Callan Jr., Monopole catalysis of baryon decay, Nucl. Phys.B 212 (1983) 391 [INSPIRE].

  35. [35]

    C.G. Callan and E. Witten, Monopole catalysis of skyrmion decay, Nucl. Phys.B 239 (1984) 161.

  36. [36]

    D.K. Hong, K.-M. Lee, C. Park and H.-U. Yee, Holographic monopole catalysis of baryon decay, JHEP08 (2008) 018 [arXiv:0804.1326] [INSPIRE].

  37. [37]

    B.J. Harrington and H.K. Shepard, Periodic Euclidean solutions and the finite temperature Yang-Mills gas, Phys. Rev.D 17 (1978) 2122 [INSPIRE].

  38. [38]

    B.J. Harrington and H.K. Shepard, Thermodynamics of the Yang-Mills gas, Phys. Rev.D 18 (1978) 2990 [INSPIRE].

  39. [39]

    D.J. Gross, R.D. Pisarski and L.G. Yaffe, QCD and instantons at finite temperature, Rev. Mod. Phys.53 (1981) 43 [INSPIRE].

  40. [40]

    T.C. Kraan and P. van Baal, Periodic instantons with nontrivial holonomy, Nucl. Phys.B 533 (1998) 627 [hep-th/9805168] [INSPIRE].

  41. [41]

    A.S. Gorsky, V.I. Zakharov and A.R. Zhitnitsky, On classification of QCD defects via holography, Phys. Rev.D 79 (2009) 106003 [arXiv:0902.1842] [INSPIRE].

  42. [42]

    A.M. Garcia-Garcia and J.C. Osborn, Chiral phase transition in lattice QCD as a metal-insulator transition, Phys. Rev.D 75 (2007) 034503 [hep-lat/0611019] [INSPIRE].

  43. [43]

    A. Gorsky and M. Litvinov, Metal or insulator? Dirac operator spectrum in holographic QCD, Phys. Lett.B 795 (2019) 379 [arXiv:1812.02321] [INSPIRE].

  44. [44]

    R.M. Nandkishore and M. Hermele, Fractons, Ann. Rev. Condensed Matter Phys.10 (2019) 295 [arXiv:1803.11196] [INSPIRE].

  45. [45]

    M. Pretko, The fracton gauge principle, Phys. Rev.B 98 (2018) 115134 [arXiv:1807.11479] [INSPIRE].

  46. [46]

    H.-U. Yee and I. Zahed, Holographic two dimensional QCD and Chern-Simons term, JHEP07 (2011) 033 [arXiv:1103.6286] [INSPIRE].

  47. [47]

    D. Diakonov and M.I. Eides, Chiral Lagrangian from a functional integral over quarks, JETP Lett. 38 (1983) 433 [Pisma Zh. Eksp. Tear. Fiz.38 (1983) 358] [INSPIRE].

  48. [48]

    P. Rossi, Propagation functions in the field of a monopole, Nucl. Phys.B 149 (1979) 170 [INSPIRE].

  49. [49]

    F. Wilczek, Quantum time crystals, Phys. Rev. Lett.109 (2012) 160401 [arXiv:1202.2539] [INSPIRE].

  50. [50]

    F. Wilczek, Superfiuidity and space-time translation symmetry breaking, Phys. Rev. Lett. 111 (2013) 250402.

  51. [51]

    K. Sacha and J. Zakrzewski, Time crystals: a review, Rept. Frog. Phys.81 (2017) 016401.

  52. [52]

    I.K. Affieck, O. Alvarez and N.S. Manton, Pair production at strong coupling in wea k external fields, Nucl. Phys.B 197 (1982) 509 [INSPIRE].

  53. [53]

    A. Gorsky, Spontaneous creation of the brane world and direction of the time arrow, Phys. Lett.B 646 (2007) 183 [hep-th/0606072] [INSPIRE].

  54. [54]

    S. Kinoshita, K. Murata and T. Oka, Holographic Floquet states II: Floquet condensation of vector mesons in nonequilibrium phase diagram, JHEP06 (2018) 096 [arXiv:1712.06786] [INSPIRE].

  55. [55]

    N. Seiberg, Field theories with a vector global symmetry, arXiv:1909.10544 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Correspondence to A. Gorsky.

Additional information

ArXiv ePrint: 1910.06304

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gorsky, A., Grekov, A. Flavored extended instanton in QCD. J. High Energ. Phys. 2020, 74 (2020). https://doi.org/10.1007/JHEP01(2020)074

Download citation

Keywords

  • Chiral Lagrangians
  • Confinement
  • Gauge-gravity correspondence