Advertisement

The holographic dual of the entanglement wedge symplectic form

  • Josh KirklinEmail author
Open Access
Regular Article - Theoretical Physics
  • 17 Downloads

Abstract

In this paper, we find the boundary dual of the symplectic form for the bulk fields in any entanglement wedge. The key ingredient is Uhlmann holonomy, which is a notion of parallel transport of purifications of density matrices based on a maximisation of transition probabilities. Using a replica trick, we compute this holonomy for curves of reduced states in boundary subregions of holographic QFTs at large N, subject to changes of operator insertions on the boundary. It is shown that the Berry phase along Uhlmann parallel paths may be written as the integral of an abelian connection whose curvature is the symplectic form of the entanglement wedge. This generalises previous work on holographic Berry curvature.

Keywords

AdS-CFT Correspondence Gauge-gravity correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [Adv. Theor. Math. Phys.2 (1998) 231] [hep-th/9711200] [INSPIRE].
  2. [2]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A Covariant holographic entanglement entropy proposal, JHEP07 (2007) 062 [arXiv:0705.0016] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    M. Van Raamsdonk, Comments on quantum gravity and entanglement, arXiv:0907.2939 [INSPIRE].
  6. [6]
    R. Bousso, S. Leichenauer and V. Rosenhaus, Light-sheets and AdS/CFT, Phys. Rev.D 86 (2012) 046009 [arXiv:1203.6619] [INSPIRE].
  7. [7]
    B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The gravity dual of a density matrix, Class. Quant. Grav.29 (2012) 155009 [arXiv:1204.1330] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    R. Bousso et al., Null geodesics, local CFT operators and AdS/CFT for subregions, Phys. Rev.D 88 (2013) 064057 [arXiv:1209.4641] [INSPIRE].
  9. [9]
    M. Headrick, V.E. Hubeny, A. Lawrence and M. Rangamani, Causality & holographic entanglement entropy, JHEP12 (2014) 162 [arXiv:1408.6300] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A. Almheiri, X. Dong and D. Harlow, Bulk locality and quantum error correction in AdS/CFT, JHEP04 (2015) 163 [arXiv:1411.7041] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    D.L. Jafferis, A. Lewkowycz, J. Maldacena and S.J. Suh, Relative entropy equals bulk relative entropy, JHEP06 (2016) 004 [arXiv:1512.06431] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    X. Dong, D. Harlow and A.C. Wall, Reconstruction of bulk operators within the entanglement wedge in gauge-gravity duality, Phys. Rev. Lett.117 (2016) 021601 [arXiv:1601.05416] [INSPIRE].
  13. [13]
    W. Donnelly, B. Michel, D. Marolf and J. Wien, Living on the edge: a toy model for holographic reconstruction of algebras with centers, JHEP04 (2017) 093 [arXiv:1611.05841] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    T. Faulkner and A. Lewkowycz, Bulk locality from modular flow, JHEP07 (2017) 151 [arXiv:1704.05464] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    R.E. Peierls, The commutation laws of relativistic field theory, Proc. Roy. Soc. LondonA 214 (152) 143.Google Scholar
  16. [16]
    B.S. DeWitt, The spacetime approach to quantum field theory, in the proceedings of the Les Houches Summer School on Theoretical Physics: Relativity, Groups and Topology, June 27–August 4, Les Houces, France (1984).Google Scholar
  17. [17]
    B.S. DeWitt, The global approach to quantum field theory. Vol. 1, 2, Int. Ser. Monogr. Phys.114 (2003) 1 [INSPIRE].
  18. [18]
    P.G. Bergmann and R. Schiller, Classical and quantum field theories in the Lagrangian formalism, Phys. Rev.89 (1953) 4 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    C. Crnkovic, Symplectic geometry of the covariant phase space, superstrings and superspace, Class. Quant. Grav.5 (1988) 1557 [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  20. [20]
    C. Crnkovic and E. Witten, Covariant description of canonical formalism in geometrical theories, in Three hundred years of gravitation, S.W. Hawking and W. Israel, Cambridge University Press, Cambridge U.K. (1987).Google Scholar
  21. [21]
    G.J. Zuckerman, Action principles and global geometry, Conf. Proc.C 8607214 (1986) 259 [INSPIRE].Google Scholar
  22. [22]
    A. Ashtekar and A. Magnon-Ashtekar, On the symplectic structure of general relativity, Commun. Math. Phys.86 (1982) 55.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    J. Lee and R.M. Wald, Local symmetries and constraints, J. Math. Phys.31 (1990) 725 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    J.D. Brown and J.W. York Jr., Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev.D 47 (1993) 1407 [gr-qc/9209012] [INSPIRE].
  25. [25]
    D.M. Marolf, Poisson brackets on the space of histories, Annals Phys.236 (1994) 374 [hep-th/9308141] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev.D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].
  27. [27]
    R.M. Wald and A. Zoupas, A general definition of ‘conserved quantities’ in general relativity and other theories of gravity, Phys. Rev.D 61 (2000) 084027 [gr-qc/9911095] [INSPIRE].
  28. [28]
    G. Barnich and F. Brandt, Covariant theory of asymptotic symmetries, conservation laws and central charges, Nucl. Phys.B 633 (2002) 3 [hep-th/0111246] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    S. Hollands and D. Marolf, Asymptotic generators of fermionic charges and boundary conditions preserving supersymmetry, Class. Quant. Grav.24 (2007) 2301 [gr-qc/0611044] [INSPIRE].
  30. [30]
    D. Harlow and J.-Q. Wu, Covariant phase space with boundaries, arXiv:1906.08616 [INSPIRE].
  31. [31]
    J. Kirklin, Unambiguous phase spaces for subregions, JHEP03 (2019) 116 [arXiv:1901.09857] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  32. [32]
    W. Donnelly and A.C. Wall, Entanglement entropy of electromagnetic edge modes, Phys. Rev. Lett.114 (2015) 111603 [arXiv:1412.1895] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    W. Donnelly and L. Freidel, Local subsystems in gauge theory and gravity, JHEP09 (2016) 102 [arXiv:1601.04744] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  34. [34]
    W. Donnelly and S.B. Giddings, Observables, gravitational dressing and obstructions to locality and subsystems, Phys. Rev.D 94 (2016) 104038 [arXiv:1607.01025] [INSPIRE].ADSMathSciNetGoogle Scholar
  35. [35]
    A.J. Speranza, Local phase space and edge modes for diffeomorphism-invariant theories, JHEP02 (2018) 021 [arXiv:1706.05061] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  36. [36]
    J. Camps, Superselection sectors of gravitational subregions, JHEP01 (2019) 182 [arXiv:1810.01802] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  37. [37]
    X. Dong, D. Harlow and D. Marolf, Flat entanglement spectra in fixed-area states of quantum gravity, JHEP10 (2019) 240 [arXiv:1811.05382] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  38. [38]
    L. Donnay, G. Giribet, H.A. Gonzalez and M. Pino, Supertranslations and superrotations at the black hole horizon, Phys. Rev. Lett.116 (2016) 091101 [arXiv:1511.08687] [INSPIRE].
  39. [39]
    S.W. Hawking, M.J. Perry and A. Strominger, Soft hair on black holes, Phys. Rev. Lett.116 (2016) 231301 [arXiv:1601.00921] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    S.W. Hawking, M.J. Perry and A. Strominger, Superrotation charge and supertranslation hair on black holes, JHEP05 (2017) 161 [arXiv:1611.09175] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  41. [41]
    L. Donnay, G. Giribet, H.A. González and M. Pino, Extended symmetries at the black hole horizon, JHEP09 (2016) 100 [arXiv:1607.05703] [INSPIRE].
  42. [42]
    S. Haco, S.W. Hawking, M.J. Perry and A. Strominger, Black hole entropy and soft hair, JHEP12 (2018) 098 [arXiv:1810.01847] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  43. [43]
    S. Haco, M.J. Perry and A. Strominger, Kerr-Newman black hole entropy and soft hair, arXiv:1902.02247 [INSPIRE].
  44. [44]
    S. Pancharatnam, Generalized theory of interference, and its applications. Part I. Coherent pencils, Proc. Indian Acad. Sci.A 44 (1956) 247.Google Scholar
  45. [45]
    M.V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. Rooy. Sooc. LondonA 392 (1984) 45.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  46. [46]
    B. Simon, Holonomy, the quantum adiabatic theorem and Berry’s phase, Phys. Rev. Lett.51 (1983) 2167 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    F. Wilczek and A. Zee, Appearance of gauge structure in simple dynamical systems, Phys. Rev. Lett.52 (1984) 2111 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    Y. Aharonov and J. Anandan, Phase change during a cyclic quantum evolution, Phys. Rev. Lett.58 (1987) 1593 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    J. Samuel and R. Bhandari, General setting for Berry’s phase, Phys. Rev. Lett.60 (1988) 2339 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    A. Belin, A. Lewkowycz and G. Sárosi, The boundary dual of the bulk symplectic form, Phys. Lett.B 789 (2019) 71 [arXiv:1806.10144] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  51. [51]
    A. Belin, A. Lewkowycz and G. Sárosi, Complexity and the bulk volume, a new York time story, JHEP03 (2019) 044 [arXiv:1811.03097] [INSPIRE].
  52. [52]
    A. Uhlmann, The “transition probability” in the state space of a-algebra,  https://doi.org/10.1016/0034-4877(76)90060-4Rept. Math. Phys.9 (1976) 273.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  53. [53]
    A. Uhlmann, Gauge field governing parallel transport along mixed states, Lett. Math. Phys.21 (1991) 229 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  54. [54]
    A. Uhlmann, The metric of Bures and the geometric phase, in Groups and realted topics, R. Gielerak et al. eds., Springer, Germany (1992).Google Scholar
  55. [55]
    S.L. Braunstein and C.M. Caves, Statistical distance and the geometry of quantum states, Phys. Rev. Lett.72 (1994) 3439 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  56. [56]
    B. Czech, L. Lamprou, S. Mccandlish and J. Sully, Modular Berry connection for entangled subregions in AdS/CFT, Phys. Rev. Lett.120 (2018) 091601 [arXiv:1712.07123] [INSPIRE].
  57. [57]
    B. Czech, L. Lamprou and L. Susskind, Entanglement holonomies, arXiv:1807.04276 [INSPIRE].
  58. [58]
    B. Czech, J. De Boer, D. Ge and L. Lamprou, A modular sewing kit for entanglement wedges, JHEP11 (2019) 094 [arXiv:1903.04493] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    R. Jozsa, Fidelity for mixed quantum states, J. Mod. Opt.41 (1994) 2315.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  60. [60]
    S. Banerjee, J. Erdmenger and D. Sarkar, Connecting Fisher information to bulk entanglement in holography, JHEP08 (2018) 001 [arXiv:1701.02319] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  61. [61]
    M. Alishahiha and A. Faraji Astaneh, Holographic fidelity susceptibility, Phys. Rev.D 96 (2017) 086004 [arXiv:1705.01834] [INSPIRE].
  62. [62]
    M. Moosa and I. Shehzad, Is volume the holographic dual of fidelity susceptibility?, arXiv:1809.10169 [INSPIRE].
  63. [63]
    N. Lashkari, Relative entropies in conformal field theory, Phys. Rev. Lett.113 (2014) 051602 [arXiv:1404.3216] [INSPIRE].
  64. [64]
    A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP08 (2013) 090 [arXiv:1304.4926] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  65. [65]
    S. Banerjee, Wess-Zumino consistency condition for entanglement entropy, Phys. Rev. Lett.109 (2012) 010402 [arXiv:1109.5672] [INSPIRE].
  66. [66]
    T. Faulkner, R.G. Leigh and O. Parrikar, Shape dependence of entanglement entropy in conformal field theories, JHEP04 (2016) 088 [arXiv:1511.05179] [INSPIRE].ADSMathSciNetGoogle Scholar
  67. [67]
    T. Faulkner, R.G. Leigh, O. Parrikar and H. Wang, Modular Hamiltonians for Deformed Half-Spaces and the Averaged Null Energy Condition, JHEP09 (2016) 038 [arXiv:1605.08072] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  68. [68]
    A. Lewkowycz and O. Parrikar, The holographic shape of entanglement and Einstein’s equations, JHEP05 (2018) 147 [arXiv:1802.10103] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  69. [69]
    R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev.D 48 (1993) R3427 [gr-qc/9307038] [INSPIRE].
  70. [70]
    M.R. Wald, On identically closed forms locally constructed from a field, J. Math. Phys.31 (1990) 2378.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  71. [71]
    T. Regge and C. Teitelboim, Role of surface integrals in the Hamiltonian formulation of general relativity, Annals Phys.88 (1974) 286 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  72. [72]
    J. Brown and M. Henneaux, On the Poisson brackets of differentiable generators in classical field theory, J. Math. Phys.27 (1986) 489.ADSMathSciNetCrossRefGoogle Scholar
  73. [73]
    G. Barnich, F. Brandt and M. Henneaux, Local BRST cohomology in gauge theories, Phys. Rept.338 (2000) 439 [hep-th/0002245] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  74. [74]
    G. Compère and A. Fiorucci, Advanced lectures on general relativity, arXiv:1801.07064 [INSPIRE].
  75. [75]
    J. Aberg et al., Operational approach to the Uhlmann holonomy, Phys. Rev.A 75 (2007) 032106.Google Scholar
  76. [76]
    O. Viyuela et al., Observation of topological Uhlmann phases with superconducting qubits, arXiv:1607.08778.
  77. [77]
    T. Faulkner, A. Lewkowycz and J. Maldacena, Quantum corrections to holographic entanglement entropy, JHEP11 (2013) 074 [arXiv:1307.2892] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  78. [78]
    M. Alishahiha, Holographic complexity, Phys. Rev.D 92 (2015) 126009 [arXiv:1509.06614] [INSPIRE].ADSMathSciNetGoogle Scholar
  79. [79]
    O. Ben-Ami and D. Carmi, On volumes of subregions in holography and complexity, JHEP11 (2016) 129 [arXiv:1609.02514] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  80. [80]
    D. Carmi et al., On the time dependence of holographic complexity, JHEP11 (2017) 188 [arXiv:1709.10184] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  81. [81]
    D. Carmi, More on holographic volumes, entanglement and complexity, arXiv:1709.10463 [INSPIRE].
  82. [82]
    B. Chen et al., Holographic subregion complexity under a thermal quench, JHEP07 (2018) 034 [arXiv:1803.06680].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  83. [83]
    C.A. Agón, M. Headrick and B. Swingle, Subsystem complexity and holography, JHEP02 (2019) 145 [arXiv:1804.01561] [INSPIRE].
  84. [84]
    R. Abt et al., Holographic subregion complexity from kinematic space, JHEP01 (2019) 012 [arXiv:1805.10298] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  85. [85]
    O. Viyuela, A. Riva and M.A. Martin-Delgado, Uhlmann phase as a topological measure for one-dimensional fermion systems, Phys. Rev. Lett.112 (2014) 130401.ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2020

Authors and Affiliations

  1. 1.Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical SciencesUniversity of CambridgeCambridgeU.K.

Personalised recommendations