Advertisement

New higher derivative action for tensor multiplet in \( \mathcal{N} \) = 2 conformal supergravity in four dimensions

  • 10 Accesses

Abstract

We will use the covariant superform approach to develop a new density formula for \( \mathcal{N} \) = 2 conformal supergravity which is based on a fermionic multiplet whose lowest component is a dimension-5/2 spinor. We will show that this density formula admits an embedding of the real scalar multiplet of [1]. Upon using the embedding of the tensor multiplet into the real scalar multiplet, we will construct a new higher derivative action of the tensor multiplet in \( \mathcal{N} \) = 2 conformal supergravity.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    S. Hegde, I. Lodato and B. Sahoo, 24 + 24 real scalar multiplet in four dimensional N = 2 conformal supergravity, Phys. Rev.D 97 (2018) 066026 [arXiv:1712.02309] [INSPIRE].

  2. [2]

    G. Lopes Cardoso, B. de Wit and T. Mohaupt, Corrections to macroscopic supersymmetric black hole entropy, Phys. Lett.B 451 (1999) 309 [hep-th/9812082] [INSPIRE].

  3. [3]

    A. Sen, Black Hole Entropy Function, Attractors and Precision Counting of Microstates, Gen. Rel. Grav.40 (2008) 2249 [arXiv:0708.1270] [INSPIRE].

  4. [4]

    T. Mohaupt, Black hole entropy, special geometry and strings, Fortsch. Phys.49 (2001) 3 [hep-th/0007195] [INSPIRE].

  5. [5]

    E. Bergshoeff, M. de Roo and B. de Wit, Extended Conformal Supergravity, Nucl. Phys.B 182 (1981) 173 [INSPIRE].

  6. [6]

    D. Butter, B. de Wit, S.M. Kuzenko and I. Lodato, New higher-derivative invariants in N = 2 supergravity and the Gauss-Bonnet term, JHEP12 (2013) 062 [arXiv:1307.6546] [INSPIRE].

  7. [7]

    S.M. Kuzenko and J. Novak, On curvature squared terms in N = 2 supergravity, Phys. Rev.D 92 (2015) 085033 [arXiv:1507.04922] [INSPIRE].

  8. [8]

    B. de Wit, S. Katmadas and M. van Zalk, New supersymmetric higher-derivative couplings: Full N = 2 superspace does not count!, JHEP01 (2011) 007 [arXiv:1010.2150] [INSPIRE].

  9. [9]

    M. Kaku and P.K. Townsend, Poincaré supergravity as broken superconformal gravity, Phys. Lett.76B (1978) 54 [INSPIRE].

  10. [10]

    S. Ferrara, M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Gauging the Graded Conformal Group with Unitary Internal Symmetries, Nucl. Phys.B 129 (1977) 125 [INSPIRE].

  11. [11]

    B. de Wit, J.W. van Holten and A. Van Proeyen, Transformation Rules of N = 2 Supergravity Multiplets, Nucl. Phys.B 167 (1980) 186 [INSPIRE].

  12. [12]

    D. Butter, S. Hegde, I. Lodato and B. Sahoo, N = 2 dilaton Weyl multiplet in 4D supergravity, JHEP03 (2018) 154 [arXiv:1712.05365] [INSPIRE].

  13. [13]

    P.S. Howe, K.S. Stelle and P.K. Townsend, The Relaxed Hypermultiplet: An Unconstrained N = 2 Superfield Theory, Nucl. Phys.B 214 (1983) 519 [INSPIRE].

  14. [14]

    M. de Roo, J.W. van Holten, B. de Wit and A. Van Proeyen, Chiral Superfields in N = 2 Supergravity, Nucl. Phys.B 173 (1980) 175 [INSPIRE].

  15. [15]

    B. de Wit, J.W. van Holten and A. Van Proeyen, Structure of N = 2 Supergravity, Nucl. Phys.B 184 (1981) 77 [Erratum ibid.B 222 (1983) 516] [INSPIRE].

  16. [16]

    B. de Wit, R. Philippe and A. Van Proeyen, The Improved Tensor Multiplet in N = 2 Supergravity, Nucl. Phys.B 219 (1983) 143 [INSPIRE].

  17. [17]

    S.M. Kuzenko, U. Lindström, M. Roček and G. Tartaglino-Mazzucchelli, On conformal supergravity and projective superspace, JHEP08 (2009) 023 [arXiv:0905.0063] [INSPIRE].

  18. [18]

    D. Butter and S.M. Kuzenko, New higher-derivative couplings in 4D N = 2 supergravity, JHEP03 (2011) 047 [arXiv:1012.5153] [INSPIRE].

  19. [19]

    D. Butter and S.M. Kuzenko, Generating higher-derivative couplings in N = 2 supergravity, Fortsch. Phys.60 (2012) 941 [arXiv:1202.0336] [INSPIRE].

  20. [20]

    D. Butter, S.M. Kuzenko and J. Novak, The linear multiplet and ectoplasm, JHEP09 (2012) 131 [arXiv:1205.6981] [INSPIRE].

  21. [21]

    D. Butter, S.M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, Conformal supergravity in three dimensions: Off-shell actions, JHEP10 (2013) 073 [arXiv:1306.1205] [INSPIRE].

  22. [22]

    S.M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, N = 6 superconformal gravity in three dimensions from superspace, JHEP01 (2014) 121 [arXiv:1308.5552] [INSPIRE].

  23. [23]

    D. Butter, S.M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, Conformal supergravity in five dimensions: New approach and applications, JHEP02 (2015) 111 [arXiv:1410.8682] [INSPIRE].

  24. [24]

    S.J. Gates Jr., M.T. Grisaru, M.E. Knutt-Wehlau and W. Siegel, Component actions from curved superspace: Normal coordinates and ectoplasm, Phys. Lett.B 421 (1998) 203 [hep-th/9711151] [INSPIRE].

  25. [25]

    S.J. Gates Jr., Ectoplasm has no topology: The Prelude, in Supersymmetries and Quantum Symmetries (SQS’97): Proceedings, 2nd International Seminar, dedicated to the Memory of V.I. Ogievetsky, Dubna, Russia, 22–26 July 1997, pp. 46–57 (1997) [hep-th/9709104] [INSPIRE].

  26. [26]

    D. Butter, F. Ciceri and B. Sahoo, N = 4 conformal supergravity: the complete actions, arXiv:1910.11874 [INSPIRE].

  27. [27]

    R. D’Auria, P. Fré, P.K. Townsend and P. van Nieuwenhuizen, Invariance of Actions, Rheonomy and the New Minimal N = 1 Supergravity in the Group Manifold Approach, Annals Phys.155 (1984) 423 [INSPIRE].

  28. [28]

    L. Castellani, R. D’Auria and P. Fre, Supergravity and superstrings: A Geometric perspective. Vol. 2: Supergravity, (1991) [INSPIRE].

  29. [29]

    D. Butter, S.M. Kuzenko, J. Novak and S. Theisen, Invariants for minimal conformal supergravity in six dimensions, JHEP12 (2016) 072 [arXiv:1606.02921] [INSPIRE].

  30. [30]

    D. Butter, J. Novak and G. Tartaglino-Mazzucchelli, The component structure of conformal supergravity invariants in six dimensions, JHEP05 (2017) 133 [arXiv:1701.08163] [INSPIRE].

  31. [31]

    C. Arias, W.D. Linch, III and A.K. Ridgway, Superforms in six-dimensional superspace, JHEP05 (2016) 016 [arXiv:1402.4823] [INSPIRE].

  32. [32]

    D. Butter, N = 2 Conformal Superspace in Four Dimensions, JHEP10 (2011) 030 [arXiv:1103.5914] [INSPIRE].

  33. [33]

    B. de Wit and F. Saueressig, Off-shell N = 2 tensor supermultiplets, JHEP09 (2006) 062 [hep-th/0606148] [INSPIRE].

  34. [34]

    D. Butter, J. Novak, M. Ozkan, Y. Pang and G. Tartaglino-Mazzucchelli, Curvature squared invariants in six-dimensional \( \mathcal{N} \) = (1, 0) supergravity, JHEP04 (2019) 013 [arXiv:1808.00459] [INSPIRE].

  35. [35]

    N. Cribiori and G. Dall’Agata, On the off-shell formulation of N = 2 supergravity with tensor multiplets, JHEP08 (2018) 132 [arXiv:1803.08059] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Correspondence to Subramanya Hegde.

Additional information

ArXiv ePrint: 1911.09585

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hegde, S., Sahoo, B. New higher derivative action for tensor multiplet in \( \mathcal{N} \) = 2 conformal supergravity in four dimensions. J. High Energ. Phys. 2020, 70 (2020). https://doi.org/10.1007/JHEP01(2020)070

Download citation

Keywords

  • Extended Supersymmetry
  • Supergravity Models