Advertisement

On subregion action complexity in AdS3 and in the BTZ black hole

  • 11 Accesses

Abstract

We analytically compute subsystem action complexity for a segment in the BTZ black hole background up to the finite term, and we find that it is equal to the sum of a linearly divergent term proportional to the size of the subregion and of a term proportional to the entanglement entropy. This elegant structure does not survive to more complicated geometries: in the case of a two segments subregion in AdS3, complexity has additional finite contributions. We give analytic results for the mutual action complexity of a two segments subregion.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [INSPIRE].

  2. [2]

    J.D. Bekenstein, Black holes and entropy, Phys. Rev.D 7 (1973) 2333 [INSPIRE].

  3. [3]

    M. Rangamani and T. Takayanagi, Holographic entanglement entropy, Lect. Notes Phys.931 (2017) 1 [arXiv:1609.01287].

  4. [4]

    M. Headrick, Lectures on entanglement entropy in field theory and holography, arXiv:1907.08126 [INSPIRE].

  5. [5]

    L. Susskind, Computational complexity and black hole horizons, Fortsch. Phys.64 (2016) 44 [Addendum ibid.46 (2016) 44] [arXiv:1403.5695] [INSPIRE].

  6. [6]

    D. Stanford and L. Susskind, Complexity and shock wave geometries, Phys. Rev.D 90 (2014) 126007 [arXiv:1406.2678] [INSPIRE].

  7. [7]

    L. Susskind, Entanglement is not enough, Fortsch. Phys.64 (2016) 49 [arXiv:1411.0690] [INSPIRE].

  8. [8]

    L. Susskind, Three lectures on complexity and black holes, 2018, arXiv:1810.11563 [INSPIRE].

  9. [9]

    M.A. Nielsen, A geometric approach to quantum circuit lower bounds, Quant. Inf. Comput.6 (2006) 213 [quant-ph/0502070].

  10. [10]

    M.R. Dowling and M.A. Nielsen, The geometry of quantum computation, Quant. Inf. Comput.8 (2008) 861 [quant-ph/0701004].

  11. [11]

    R. Jefferson and R.C. Myers, Circuit complexity in quantum field theory, JHEP10 (2017) 107 [arXiv:1707.08570] [INSPIRE].

  12. [12]

    S. Chapman, M.P. Heller, H. Marrochio and F. Pastawski, Toward a definition of complexity for quantum field theory states, Phys. Rev. Lett.120 (2018) 121602 [arXiv:1707.08582] [INSPIRE].

  13. [13]

    K. Hashimoto, N. Iizuka and S. Sugishita, Time evolution of complexity in Abelian gauge theories, Phys. Rev.D 96 (2017) 126001 [arXiv:1707.03840] [INSPIRE].

  14. [14]

    S. Chapman et al., Complexity and entanglement for thermofield double states, SciPost Phys.6 (2019) 034 [arXiv:1810.05151] [INSPIRE].

  15. [15]

    H.A. Camargo et al., Complexity as a novel probe of quantum quenches: universal scalings and purifications, Phys. Rev. Lett.122 (2019) 081601 [arXiv:1807.07075] [INSPIRE].

  16. [16]

    P. Caputa et al., Anti-de Sitter space from optimization of path integrals in conformal field theories, Phys. Rev. Lett.119 (2017) 071602 [arXiv:1703.00456] [INSPIRE].

  17. [17]

    P. Caputa et al., Liouville action as path-integral complexity: from continuous tensor networks to AdS/CFT, JHEP11 (2017) 097 [arXiv:1706.07056] [INSPIRE].

  18. [18]

    A. Bhattacharyya et al., Path-integral complexity for perturbed CFTs, JHEP07 (2018) 086 [arXiv:1804.01999] [INSPIRE].

  19. [19]

    P. Caputa and J.M. Magan, Quantum computation as gravity, Phys. Rev. Lett.122 (2019) 231302 [arXiv:1807.04422] [INSPIRE].

  20. [20]

    A. Belin, A. Lewkowycz and G. Sárosi, Complexity and the bulk volume, a new York time story, JHEP03 (2019) 044 [arXiv:1811.03097] [INSPIRE].

  21. [21]

    A.R. Brown et al., Holographic complexity equals bulk action?, Phys. Rev. Lett.116 (2016) 191301 [arXiv:1509.07876] [INSPIRE].

  22. [22]

    A.R. Brown et al., Complexity, action and black holes, Phys. Rev.D 93 (2016) 086006 [arXiv:1512.04993] [INSPIRE].

  23. [23]

    J. Couch, W. Fischler and P.H. Nguyen, Noether charge, black hole volume and complexity, JHEP03 (2017) 119 [arXiv:1610.02038] [INSPIRE].

  24. [24]

    L. Lehner, R.C. Myers, E. Poisson and R.D. Sorkin, Gravitational action with null boundaries, Phys. Rev.D 94 (2016) 084046 [arXiv:1609.00207] [INSPIRE].

  25. [25]

    R.-G. Cai et al., Action growth for AdS black holes, JHEP09 (2016) 161 [arXiv:1606.08307] [INSPIRE].

  26. [26]

    S. Chapman, H. Marrochio and R.C. Myers, Complexity of formation in holography, JHEP01 (2017) 062 [arXiv:1610.08063] [INSPIRE].

  27. [27]

    D. Carmi et al., On the Time Dependence of Holographic Complexity, JHEP11 (2017) 188 [arXiv:1709.10184] [INSPIRE].

  28. [28]

    S. Chapman, D. Ge and G. Policastro, Holographic complexity for defects distinguishes action from volume, JHEP05 (2019) 049 [arXiv:1811.12549] [INSPIRE].

  29. [29]

    M. Moosa, Evolution of complexity following a global quench, JHEP03 (2018) 031 [arXiv:1711.02668] [INSPIRE].

  30. [30]

    M. Moosa, Divergences in the rate of complexification, Phys. Rev.D 97 (2018) 106016 [arXiv:1712.07137] [INSPIRE].

  31. [31]

    S. Chapman, H. Marrochio and R.C. Myers, Holographic complexity in Vaidya spacetimes. Part I, JHEP06 (2018) 046 [arXiv:1804.07410] [INSPIRE].

  32. [32]

    S. Chapman, H. Marrochio and R.C. Myers, Holographic complexity in Vaidya spacetimes. Part II, JHEP06 (2018) 114 [arXiv:1805.07262] [INSPIRE].

  33. [33]

    J.L.F. Barbon and E. Rabinovici, Holographic complexity and spacetime singularities, JHEP01 (2016) 084 [arXiv:1509.09291] [INSPIRE].

  34. [34]

    S. Bolognesi, E. Rabinovici and S.R. Roy, On some universal features of the holographic quantum complexity of bulk singularities, JHEP06 (2018) 016 [arXiv:1802.02045] [INSPIRE].

  35. [35]

    M. Flory and N. Miekley, Complexity change under conformal transformations in AdS 3/CFT 2, JHEP05 (2019) 003 [arXiv:1806.08376] [INSPIRE].

  36. [36]

    M. Flory, WdW-patches in AdS 3and complexity change under conformal transformations II, JHEP05 (2019) 086 [arXiv:1902.06499] [INSPIRE].

  37. [37]

    M. Alishahiha, A. Faraji Astaneh, A. Naseh and M.H. Vahidinia, On complexity for F(R) and critical gravity, JHEP05 (2017) 009 [arXiv:1702.06796] [INSPIRE].

  38. [38]

    A. Akhavan, M. Alishahiha, A. Naseh and H. Zolfi, Complexity and behind the horizon cut off, JHEP12 (2018) 090 [arXiv:1810.12015] [INSPIRE].

  39. [39]

    M. Alishahiha et al., Complexity growth with Lifshitz scaling and hyperscaling violation, JHEP07 (2018) 042 [arXiv:1802.06740] [INSPIRE].

  40. [40]

    M. Ghodrati, Complexity growth in massive gravity theories, the effects of chirality and more, Phys. Rev.D 96 (2017) 106020 [arXiv:1708.07981] [INSPIRE].

  41. [41]

    R. Auzzi, S. Baiguera and G. Nardelli, Volume and complexity for warped AdS black holes, JHEP06 (2018) 063 [arXiv:1804.07521] [INSPIRE].

  42. [42]

    R. Auzzi et al., Complexity and action for warped AdS black holes, JHEP09 (2018) 013 [arXiv:1806.06216] [INSPIRE].

  43. [43]

    H. Dimov, R.C. Rashkov and T. Vetsov, Thermodynamic information geometry and complexity growth of a warped AdS black hole and the warped AdS 3/CFT 2correspondence, Phys. Rev.D 99 (2019) 126007 [arXiv:1902.02433] [INSPIRE].

  44. [44]

    M. Headrick, V.E. Hubeny, A. Lawrence and M. Rangamani, Causality & holographic entanglement entropy, JHEP12 (2014) 162 [arXiv:1408.6300] [INSPIRE].

  45. [45]

    M. Alishahiha, Holographic complexity, Phys. Rev.D 92 (2015) 126009 [arXiv:1509.06614] [INSPIRE].

  46. [46]

    V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

  47. [47]

    D. Carmi, R.C. Myers and P. Rath, Comments on holographic complexity, JHEP03 (2017) 118 [arXiv:1612.00433] [INSPIRE].

  48. [48]

    O. Ben-Ami and D. Carmi, On volumes of subregions in holography and complexity, JHEP11 (2016) 129 [arXiv:1609.02514] [INSPIRE].

  49. [49]

    R. Abt et al., Topological complexity in AdS 3/CFT 2, Fortsch. Phys.66 (2018) 1800034 [arXiv:1710.01327] [INSPIRE].

  50. [50]

    R. Abt et al., Holographic subregion complexity from kinematic space, JHEP01 (2019) 012 [arXiv:1805.10298] [INSPIRE].

  51. [51]

    C.A. Agón, M. Headrick and B. Swingle, Subsystem complexity and holography, JHEP02 (2019) 145 [arXiv:1804.01561] [INSPIRE].

  52. [52]

    M. Alishahiha, K. Babaei Velni and M.R. Mohammadi Mozaffar, Black hole subregion action and complexity, Phys. Rev.D 99 (2019) 126016 [arXiv:1809.06031] [INSPIRE].

  53. [53]

    E. Cáceres, J. Couch, S. Eccles and W. Fischler, Holographic purification complexity, Phys. Rev.D 99 (2019) 086016 [arXiv:1811.10650] [INSPIRE].

  54. [54]

    P. Roy and T. Sarkar, Note on subregion holographic complexity, Phys. Rev.D 96 (2017) 026022 [arXiv:1701.05489] [INSPIRE].

  55. [55]

    P. Roy and T. Sarkar, Subregion holographic complexity and renormalization group flows, Phys. Rev.D 97 (2018) 086018 [arXiv:1708.05313] [INSPIRE].

  56. [56]

    E. Bakhshaei, A. Mollabashi and A. Shirzad, Holographic subregion complexity for singular surfaces, Eur. Phys. J.C 77 (2017) 665 [arXiv:1703.03469] [INSPIRE].

  57. [57]

    A. Bhattacharya, K.T. Grosvenor and S. Roy, Entanglement entropy and subregion complexity in thermal perturbations around pure-AdS spacetime, arXiv:1905.02220 [INSPIRE].

  58. [58]

    R. Auzzi et al., Subsystem complexity in warped AdS, JHEP09 (2019) 114 [arXiv:1906.09345] [INSPIRE].

  59. [59]

    B. Chen et al., Holographic subregion complexity under a thermal quench, JHEP07 (2018) 034 [arXiv:1803.06680] [INSPIRE].

  60. [60]

    R. Auzzi et al., On volume subregion complexity in Vaidya spacetime, JHEP11 (2019) 098 [arXiv:1908.10832] [INSPIRE].

  61. [61]

    M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett.69 (1992) 1849 [hep-th/9204099] [INSPIRE].

  62. [62]

    M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev.D 48 (1993) 1506 [Erratum ibid.D 88 (2013) 069902] [gr-qc/9302012] [INSPIRE].

  63. [63]

    E. Caceres et al., Complexity of Mixed States in QFT and Holography, arXiv:1909.10557 [INSPIRE].

  64. [64]

    E. Poisson, A relativist’s toolkit: the mathematics of black-hole mechanics, Cambridge University Press, Cambridge U.K. (2004).

  65. [65]

    B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The gravity dual of a density matrix, Class. Quant. Grav.29 (2012) 155009 [arXiv:1204.1330] [INSPIRE].

  66. [66]

    V.E. Hubeny and M. Rangamani, Causal holographic information, JHEP06 (2012) 114 [arXiv:1204.1698] [INSPIRE].

  67. [67]

    A.C. Wall, Maximin surfaces and the strong subadditivity of the covariant holographic entanglement entropy, Class. Quant. Grav.31 (2014) 225007 [arXiv:1211.3494] [INSPIRE].

  68. [68]

    V. Balasubramanian et al., Holographic thermalization, Phys. Rev.D 84 (2011) 026010 [arXiv:1103.2683] [INSPIRE].

  69. [69]

    A. Akhavan and F. Omidi, On the role of counterterms in holographic complexity, JHEP11 (2019) 054 [arXiv:1906.09561] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Correspondence to Roberto Auzzi.

Additional information

ArXiv ePrint: 1910.00526

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Auzzi, R., Baiguera, S., Legramandi, A. et al. On subregion action complexity in AdS3 and in the BTZ black hole. J. High Energ. Phys. 2020, 66 (2020). https://doi.org/10.1007/JHEP01(2020)066

Download citation

Keywords

  • AdS-CFT Correspondence
  • Black Holes