Advertisement

An alternative to diagrams for the critical O(N) model: dimensions and structure constants to order 1/N2

  • 10 Accesses

Abstract

We apply the methods of modern analytic bootstrap to the critical O(N) model in a 1/N expansion. At infinite N the model possesses higher spin symmetry which is weakly broken as we turn on 1/N. By studying consistency conditions for the correlator of four fundamental fields we derive the CFT-data for all the (broken) currents to order 1/N, and the CFT-data for the non-singlet currents to order 1/N2. To order 1/N our results are in perfect agreement with those in the literature. To order 1/N2 we reproduce known results for anomalous dimensions and obtain a variety of new results for structure constants, including the global symmetry central charge CJ to this order.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP12 (2008) 031 [arXiv:0807.0004] [INSPIRE].

  2. [2]

    D. Poland, S. Rychkov and A. Vichi, The conformal bootstrap: theory, numerical techniques and applications, Rev. Mod. Phys.91 (2019) 015002 [arXiv:1805.04405] [INSPIRE].

  3. [3]

    L.F. Alday and J.M. Maldacena, Comments on operators with large spin, JHEP11 (2007) 019 [arXiv:0708.0672] [INSPIRE].

  4. [4]

    A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The analytic bootstrap and AdS superhorizon locality, JHEP12 (2013) 004 [arXiv:1212.3616] [INSPIRE].

  5. [5]

    Z. Komargodski and A. Zhiboedov, Convexity and liberation at large spin, JHEP11 (2013) 140 [arXiv:1212.4103] [INSPIRE].

  6. [6]

    L.F. Alday, Large spin perturbation theory for conformal field theories, Phys. Rev. Lett.119 (2017) 111601 [arXiv:1611.01500] [INSPIRE].

  7. [7]

    L.F. Alday, A. Bissi and T. Lukowski, Large spin systematics in CFT, JHEP11 (2015) 101 [arXiv:1502.07707] [INSPIRE].

  8. [8]

    L.F. Alday, Solving CFTs with weakly broken higher spin symmetry, JHEP10 (2017) 161 [arXiv:1612.00696] [INSPIRE].

  9. [9]

    S. Caron-Huot, Analyticity in spin in conformal theories, JHEP09 (2017) 078 [arXiv:1703.00278] [INSPIRE].

  10. [10]

    A. Pelissetto and E. Vicari, Critical phenomena and renormalization group theory, Phys. Rept.368 (2002) 549 [cond-mat/0012164] [INSPIRE].

  11. [11]

    I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett.B 550 (2002) 213 [hep-th/0210114] [INSPIRE].

  12. [12]

    M.A. Vasiliev, Higher spin gauge theories in four-dimensions, three-dimensions and two-dimensions, Int. J. Mod. Phys.D 5 (1996) 763 [hep-th/9611024] [INSPIRE].

  13. [13]

    F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Precision islands in the Ising and O(N) models, JHEP08 (2016) 036 [arXiv:1603.04436] [INSPIRE].

  14. [14]

    D. Simmons-Duffin, The lightcone bootstrap and the spectrum of the 3d Ising CFT, JHEP03 (2017) 086 [arXiv:1612.08471] [INSPIRE].

  15. [15]

    L. Fei, S. Giombi and I.R. Klebanov, Critical O(N) models in 6 − ϵ dimensions, Phys. Rev.D 90 (2014) 025018 [arXiv:1404.1094] [INSPIRE].

  16. [16]

    A.N. Vasiliev, Yu. M. Pismak and Yu. R. Khonkonen, 1/n expansion: calculation of the exponent η in the order 1/n 3by the conformal bootstrap method, Theor. Math. Phys.50 (1982) 127 [Teor. Mat. Fiz.50 (1982) 195] [INSPIRE].

  17. [17]

    A.N. Vasiliev, Yu. M. Pismak and Yu. R. Khonkonen, 1/n expansion: calculation of the exponents η and ν in the order 1/n 2for arbitrary number of dimensions, Theor. Math. Phys.47 (1981) 465 [Teor. Mat. Fiz.47 (1981) 291] [INSPIRE].

  18. [18]

    S.E. Derkachov and A.N. Manashov, The simple scheme for the calculation of the anomalous dimensions of composite operators in the 1/N expansion, Nucl. Phys.B 522 (1998) 301 [hep-th/9710015] [INSPIRE].

  19. [19]

    A.N. Manashov, E.D. Skvortsov and M. Strohmaier, Higher spin currents in the critical O(N) vector model at 1/N 2 , JHEP08 (2017) 106 [arXiv:1706.09256] [INSPIRE].

  20. [20]

    A. Petkou, Conserved currents, consistency relations and operator product expansions in the conformally invariant O(N) vector model, Annals Phys.249 (1996) 180 [hep-th/9410093] [INSPIRE].

  21. [21]

    K. Lang and W. Rühl, The critical O(N) σ-model at dimensions 2 < d < 4: a list of quasiprimary fields, Nucl. Phys.B 402 (1993) 573 [INSPIRE].

  22. [22]

    A.C. Petkou, C Tand C Jup to next-to-leading order in 1/N in the conformally invariant O(N) vector model for 2 < d < 4, Phys. Lett.B 359 (1995) 101 [hep-th/9506116] [INSPIRE].

  23. [23]

    P. Dey, A. Kaviraj and A. Sinha, Mellin space bootstrap for global symmetry, JHEP07 (2017) 019 [arXiv:1612.05032] [INSPIRE].

  24. [24]

    L.F. Alday and S. Caron-Huot, Gravitational S-matrix from CFT dispersion relations, JHEP12 (2018) 017 [arXiv:1711.02031] [INSPIRE].

  25. [25]

    L.F. Alday, J. Henriksson and M. van Loon, Taming the ϵ-expansion with large spin perturbation theory, JHEP07 (2018) 131 [arXiv:1712.02314] [INSPIRE].

  26. [26]

    F.A. Dolan and H. Osborn, Conformal partial waves and the operator product expansion, Nucl. Phys.B 678 (2004) 491 [hep-th/0309180] [INSPIRE].

  27. [27]

    F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys.B 599 (2001) 459 [hep-th/0011040] [INSPIRE].

  28. [28]

    M. Hogervorst and B.C. van Rees, Crossing symmetry in alpha space, JHEP11 (2017) 193 [arXiv:1702.08471] [INSPIRE].

  29. [29]

    K. Lang and W. Rühl, The critical O(N) σ-model at dimensions 2 < d < 4: fusion coefficients and anomalous dimensions, Nucl. Phys.B 400 (1993) 597 [INSPIRE].

  30. [30]

    A.N. Vasiliev, Yu. M. Pismak and Yu. R. Khonkonen, Simple method of calculating the critical indices in the 1/N expansion, Theor. Math. Phys.46 (1981) 104 [Teor. Mat. Fiz.46 (1981) 157] [INSPIRE].

  31. [31]

    H. Exton, Handbook of hypergeometric integrals: theory, applications, tables, computer programs, Ellis Horwood series in mathematics and its applications, Ellis Horwood, (1978).

  32. [32]

    C. Sleight and M. Taronna, Spinning Mellin bootstrap: conformal partial waves, crossing kernels and applications, Fortsch. Phys.66 (2018) 1800038 [arXiv:1804.09334] [INSPIRE].

  33. [33]

    C. Cardona and K. Sen, Anomalous dimensions at finite conformal spin from OPE inversion, JHEP11 (2018) 052 [arXiv:1806.10919] [INSPIRE].

  34. [34]

    C. Sleight and M. Taronna, Anomalous dimensions from crossing kernels, JHEP11 (2018) 089 [arXiv:1807.05941] [INSPIRE].

  35. [35]

    J. Liu, E. Perlmutter, V. Rosenhaus and D. Simmons-Duffin, d-dimensional SYK, AdS loops and 6j symbols, JHEP03 (2019) 052 [arXiv:1808.00612] [INSPIRE].

  36. [36]

    C. Cardona, S. Guha, S.K. KaNuMIlli and K. Sen, Resummation at finite conformal spin, JHEP01 (2019) 077 [arXiv:1811.00213] [INSPIRE].

  37. [37]

    S. Albayrak, D. Meltzer and D. Poland, More analytic bootstrap: nonperturbative effects and fermions, JHEP08 (2019) 040 [arXiv:1904.00032] [INSPIRE].

  38. [38]

    J. Henriksson and M. Van Loon, Critical O(N) model to order ϵ 4from analytic bootstrap, J. Phys.A 52 (2019) 025401 [arXiv:1801.03512] [INSPIRE].

  39. [39]

    L. Rastelli and X. Zhou, How to succeed at holographic correlators without really trying, JHEP04 (2018) 014 [arXiv:1710.05923] [INSPIRE].

  40. [40]

    L.F. Alday and A. Zhiboedov, An algebraic approach to the analytic bootstrap, JHEP04 (2017) 157 [arXiv:1510.08091] [INSPIRE].

  41. [41]

    K. Lang and W. Rühl, Critical nonlinear O(N) σ-models at 2 < d < 4: the degeneracy of quasiprimary fields and it resolution, Z. Phys.C 61 (1994) 495 [INSPIRE].

  42. [42]

    S. Giombi and V. Kirilin, Anomalous dimensions in CFT with weakly broken higher spin symmetry, JHEP11 (2016) 068 [arXiv:1601.01310] [INSPIRE].

  43. [43]

    S. Yabunaka and B. Delamotte, Surprises in O(N) models: nonperturbative fixed points, large N limits and multicriticality, Phys. Rev. Lett.119 (2017) 191602 [arXiv:1707.04383] [INSPIRE].

  44. [44]

    M. Hogervorst, S. Rychkov and B.C. van Rees, Unitarity violation at the Wilson-Fisher fixed point in 4 − ϵ dimensions, Phys. Rev.D 93 (2016) 125025 [arXiv:1512.00013] [INSPIRE].

  45. [45]

    J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a higher spin symmetry, J. Phys.A 46 (2013) 214011 [arXiv:1112.1016] [INSPIRE].

  46. [46]

    O. Schnetz, Numbers and functions in quantum field theory, Phys. Rev.D 97 (2018) 085018 [arXiv:1606.08598] [INSPIRE].

  47. [47]

    M.V. Kompaniets and E. Panzer, Minimally subtracted six loop renormalization of O(N)-symmetric ϕ 4theory and critical exponents, Phys. Rev.D 96 (2017) 036016 [arXiv:1705.06483] [INSPIRE].

  48. [48]

    S.E. Derkachov, J.A. Gracey and A.N. Manashov, Four loop anomalous dimensions of gradient operators in ϕ 4theory, Eur. Phys. J.C 2 (1998) 569 [hep-ph/9705268] [INSPIRE].

  49. [49]

    F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Bootstrapping the O(N) archipelago, JHEP11 (2015) 106 [arXiv:1504.07997] [INSPIRE].

  50. [50]

    E. Katz, S. Sachdev, E.S. Sørensen and W. Witczak-Krempa, Conformal field theories at nonzero temperature: operator product expansions, Monte Carlo and holography, Phys. Rev.B 90 (2014) 245109 [arXiv:1409.3841] [INSPIRE].

  51. [51]

    K. Chen, L. Liu, Y. Deng, L. Pollet and N. Prokof’ev, Universal conductivity in a two-dimensional superfluid-to-insulator quantum critical system, Phys. Rev. Lett.112 (2014) 030402 [arXiv:1309.5635] [INSPIRE].

  52. [52]

    K. Diab, L. Fei, S. Giombi, I.R. Klebanov and G. Tarnopolsky, On C Jand C Tin the Gross-Neveu and O(N ) models, J. Phys.A 49 (2016) 405402 [arXiv:1601.07198] [INSPIRE].

  53. [53]

    A. Cappelli, L. Maffi and S. Okuda, Critical Ising model in varying dimension by conformal bootstrap, JHEP01 (2019) 161 [arXiv:1811.07751] [INSPIRE].

  54. [54]

    W. Bühring, Generalized hypergeometric functions at unit argument, Proc. Amer. Math. Soc.114 (1992) 145.

  55. [55]

    W. Li, Closed-form expression for cross-channel conformal blocks near the lightcone, arXiv:1906.00707 [INSPIRE].

  56. [56]

    P. Appell, Sur les séries hypergéométriques de deux variables et sur dés équations différentielles linéaires aux dérivés partielles (in French), C. R. Acad. Sci. Paris90 (1880) 296.

  57. [57]

    P. Appell, Sur les fonctions hypergómétriques de plusieurs variables, les polynômes d’Hermite et autres fonctions sphériques dans l’hyperespace (in French), Mém. Sci. Math.3 (1925) 82.

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Correspondence to Johan Henriksson.

Additional information

ArXiv ePrint: 1907.02445

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alday, L.F., Henriksson, J. & van Loon, M. An alternative to diagrams for the critical O(N) model: dimensions and structure constants to order 1/N2. J. High Energ. Phys. 2020, 63 (2020) doi:10.1007/JHEP01(2020)063

Download citation

Keywords

  • Conformal Field Theory
  • Global Symmetries
  • 1/N Expansion