Advertisement

Probing typical black hole microstates

  • Jan de Boer
  • Rik van Breukelen
  • Sagar F. Lokhande
  • Kyriakos PapadodimasEmail author
  • Erik Verlinde
Open Access
Regular Article - Theoretical Physics
  • 13 Downloads

Abstract

We investigate the possibility that the geometry dual to a typical AdS black hole microstate corresponds to the extended AdS-Schwarzschild geometry, including a region spacelike to the exterior. We argue that this region can be described by the mirror operators, a set of state-dependent operators in the dual CFT. We probe the geometry of a typical state by considering state-dependent deformations of the CFT Hamiltonian, which have an interpretation as a one-sided analogue of the Gao-Jafferis-Wall traversable wormhole protocol for typical states. We argue that the validity of the conjectured bulk geometry requires that out-of-time-order correlators of simple CFT operators on typical pure states must exhibit the same chaotic effects as thermal correlators at scrambling time. This condition is related to the question of whether the product of operators separated by scrambling time obey the Eigenstate Thermalization Hypothesis. We investigate some of these statements in the SYK model and discuss similarities with state-dependent perturba- tions of pure states in the SYK model previously considered by Kourkoulou and Maldacena. Finally, we discuss how the mirror operators can be used to implement an analogue of the Hayden-Preskill protocol.

Keywords

AdS-CFT Correspondence Black Holes in String Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    S.D. Mathur, The information paradox: a pedagogical introduction, Class. Quant. Grav.26 (2009) 224001 [arXiv:0909.1038] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or firewalls?, JHEP02 (2013) 062 [arXiv:1207.3123] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    A. Almheiri et al., An apologia for firewalls, JHEP09 (2013) 018 [arXiv:1304.6483] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    D. Marolf and J. Polchinski, Gauge/gravity duality and the black hole interior, Phys. Rev. Lett.111 (2013) 171301 [arXiv:1307.4706] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    R. Bousso, Firewalls from double purity, Phys. Rev.D 88 (2013) 084035 [arXiv:1308.2665] [INSPIRE].
  6. [6]
    P. Gao, D.L. Jafferis and A.C. Wall, Traversable wormholes via a double trace deformation, JHEP12 (2017) 151 [arXiv:1608.05687] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    J. Maldacena, D. Stanford and Z. Yang, Diving into traversable wormholes, Fortsch. Phys.65 (2017) 1700034 [arXiv:1704.05333] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    I. Kourkoulou and J. Maldacena, Pure states in the SYK model and nearly-AdS 2gravity, arXiv:1707.02325 [INSPIRE].
  9. [9]
    S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP03 (2014) 067 [arXiv:1306.0622] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP08 (2016) 106 [arXiv:1503.01409] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, JHEP09 (2007) 120 [arXiv:0708.4025] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    J. de Boer et al., On the interior geometry of a typical black hole microstate, JHEP05 (2019) 010 [arXiv:1804.10580] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  13. [13]
    A. Almheiri, A. Mousatov and M. Shyani, Escaping the interiors of pure boundary-state black holes, arXiv:1803.04434 [INSPIRE].
  14. [14]
    A. Almheiri, Holographic quantum error correction and the projected black hole interior, arXiv:1810.02055 [INSPIRE].
  15. [15]
    R. Jefferson, Comments on black hole interiors and modular inclusions, SciPost Phys.6 (2019) 042 [arXiv:1811.08900] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S. Cooper et al., Black hole microstate cosmology, JHEP07 (2019) 065 [arXiv:1810.10601] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    R. Brustein and Y. Zigdon, Revealing the interior of black holes out of equilibrium in the Sachdev-Ye-Kitaev model, Phys. Rev.D 98 (2018) 066013 [arXiv:1804.09017] [INSPIRE].
  18. [18]
    K. Papadodimas and S. Raju, Remarks on the necessity and implications of state-dependence in the black hole interior, Phys. Rev.D 93 (2016) 084049 [arXiv:1503.08825] [INSPIRE].
  19. [19]
    G. ’t Hooft, Dimensional reduction in quantum gravity, Conf. Proc.C 930308 (1993) 284 [gr-qc/9310026] [INSPIRE].
  20. [20]
    K. Papadodimas, A class of non-equilibrium states and the black hole interior, arXiv:1708.06328 [INSPIRE].
  21. [21]
    L. Susskind, Three lectures on complexity and black holes, arXiv:1810.11563 [INSPIRE].
  22. [22]
    M. Srednicki, The approach to thermal equilibrium in quantized chaotic systems, J. Phys.A 32 (1999) 1163.ADSMathSciNetzbMATHGoogle Scholar
  23. [23]
    J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys.61 (2013) 781 [arXiv:1306.0533] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    K. Papadodimas and S. Raju, An infalling observer in AdS/CFT, JHEP10 (2013) 212 [arXiv:1211.6767] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    K. Papadodimas and S. Raju, Black hole interior in the holographic correspondence and the information paradox, Phys. Rev. Lett.112 (2014) 051301 [arXiv:1310.6334] [INSPIRE].
  26. [26]
    K. Papadodimas and S. Raju, State-dependent bulk-boundary maps and black hole complementarity, Phys. Rev.D 89 (2014) 086010 [arXiv:1310.6335] [INSPIRE].
  27. [27]
    E. Verlinde and H. Verlinde, Black hole entanglement and quantum error correction, JHEP10 (2013) 107 [arXiv:1211.6913] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    E. Verlinde and H. Verlinde, Black hole information as topological qubits, arXiv:1306.0516 [INSPIRE].
  29. [29]
    E. Verlinde and H. Verlinde, Behind the horizon in AdS/CFT, arXiv:1311.1137 [INSPIRE].
  30. [30]
    R. Haag, Local quantum physics: fields, particles, algebras, 2nd edition, Springer, Germany (1992).Google Scholar
  31. [31]
    K. Papadodimas and S. Raju, Local operators in the eternal black hole, Phys. Rev. Lett.115 (2015) 211601 [arXiv:1502.06692] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    J.M. Bardeen, B. Carter and S.W. Hawking, The four laws of black hole mechanics, Commun. Math. Phys.31 (1973) 161 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev.D 48 (1993) R3427 [gr-qc/9307038] [INSPIRE].
  34. [34]
    V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev.D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].
  35. [35]
    S. Hollands and R.M. Wald, Stability of black holes and black branes, Commun. Math. Phys.321 (2013) 629 [arXiv:1201.0463] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    D.L. Jafferis, A. Lewkowycz, J. Maldacena and S.J. Suh, Relative entropy equals bulk relative entropy, JHEP06 (2016) 004 [arXiv:1512.06431] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    W. Donnelly and S.B. Giddings, Diffeomorphism-invariant observables and their nonlocal algebra, Phys. Rev.D 93 (2016) 024030 [Erratum ibid.D 94 (2016) 029903] [arXiv:1507.07921] [INSPIRE].
  38. [38]
    A. Kitaev, A simple model of quantum holography, talks given at KITP, April 7 and May 27 (2015).Google Scholar
  39. [39]
    J. Polchinski and V. Rosenhaus, The spectrum in the Sachdev-Ye-Kitaev model, JHEP04 (2016) 001 [arXiv:1601.06768] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev.D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].ADSMathSciNetGoogle Scholar
  41. [41]
    J.S. Cotler et al., Black holes and random matrices, JHEP05 (2017) 118 [Erratum ibid.09 (2018) 002] [arXiv:1611.04650] [INSPIRE].
  42. [42]
    J. Sonner and M. Vielma, Eigenstate thermalization in the Sachdev-Ye-Kitaev model, JHEP11 (2017) 149 [arXiv:1707.08013] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from conformal field theory, JHEP10 (2009) 079 [arXiv:0907.0151] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    A.L. Fitzpatrick, E. Katz, D. Poland and D. Simmons-Duffin, Effective conformal theory and the flat-space limit of AdS, JHEP07 (2011) 023 [arXiv:1007.2412] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    S. El-Showk and K. Papadodimas, Emergent spacetime and holographic CFTs, JHEP10 (2012) 106 [arXiv:1101.4163] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    C. Krishnan and K.V.P. Kumar, Towards a finite-N hologram, JHEP10 (2017) 099 [arXiv:1706.05364] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    D.J. Gross and V. Rosenhaus, All point correlation functions in SYK, JHEP12 (2017) 148 [arXiv:1710.08113] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    S. Lloyd, Pure state quantum statistical mechanics and black holes, arXiv:1307.0378.
  49. [49]
    V. Balasubramanian et al., Typicality versus thermality: an analytic distinction, Gen. Rel. Grav.40 (2008) 1863 [hep-th/0701122] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    V. Balasubramanian, J. de Boer, V. Jejjala and J. Simon, The library of babel: on the origin of gravitational thermodynamics, JHEP12 (2005) 006 [hep-th/0508023] [INSPIRE].ADSMathSciNetGoogle Scholar
  51. [51]
    L.F. Alday, J. de Boer and I. Messamah, The gravitational description of coarse grained microstates, JHEP12 (2006) 063 [hep-th/0607222] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    V. Balasubramanian, J. de Boer, S. El-Showk and I. Messamah, Black holes as effective geometries, Class. Quant. Grav.25 (2008) 214004 [arXiv:0811.0263] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    S. Raju and P. Shrivastava, Critique of the fuzzball program, Phys. Rev.D 99 (2019) 066009 [arXiv:1804.10616] [INSPIRE].
  54. [54]
    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Virasoro conformal blocks and thermality from classical background fields, JHEP11 (2015) 200 [arXiv:1501.05315] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    C.-M. Chang, D.M. Ramirez and M. Rangamani, Spinning constraints on chaotic large c CFTs, JHEP03 (2019) 068 [arXiv:1812.05585] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  56. [56]
    L. Foini and J. Kurchan, Eigenstate thermalization hypothesis and out of time order correlators, Phys. Rev.E 99 (2019) 042139 [arXiv:1803.10658] [INSPIRE].
  57. [57]
    G. Turiaci and H. Verlinde, On CFT and quantum chaos, JHEP12 (2016) 110 [arXiv:1603.03020] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    S.B. Giddings, Nonviolent unitarization: basic postulates to soft quantum structure of black holes, JHEP12 (2017) 047 [arXiv:1701.08765] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    D. Kabat and G. Lifschytz, Finite N and the failure of bulk locality: black holes in AdS/CFT, JHEP09 (2014) 077 [arXiv:1405.6394] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    J. Polchinski, L. Susskind and N. Toumbas, Negative energy, superluminosity and holography, Phys. Rev.D 60 (1999) 084006 [hep-th/9903228] [INSPIRE].
  61. [61]
    L. Susskind, New concepts for old black holes, arXiv:1311.3335 [INSPIRE].
  62. [62]
    I. Heemskerk, D. Marolf, J. Polchinski and J. Sully, Bulk and transhorizon measurements in AdS/CFT, JHEP10 (2012) 165 [arXiv:1201.3664] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    D.R. Brill and R.W. Lindquist, Interaction energy in geometrostatics, Phys. Rev.131 (1963) 471 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2020

Authors and Affiliations

  • Jan de Boer
    • 1
  • Rik van Breukelen
    • 2
    • 3
  • Sagar F. Lokhande
    • 1
  • Kyriakos Papadodimas
    • 4
    Email author
  • Erik Verlinde
    • 1
  1. 1.Institute for Theoretical Physics and Delta Institute for Theoretical PhysicsUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Theoretical Physics DepartmentCERNGeneva 23Switzerland
  3. 3.Geneva UniversityGeneva 4Switzerland
  4. 4.International Centre for Theoretical PhysicsTriesteItaly

Personalised recommendations