3d dualities from 2d free field correlators: recombination and rank stabilization

  • Sara Pasquetti
  • Matteo SacchiEmail author
Open Access
Regular Article - Theoretical Physics


We propose various new 3d\( \mathcal{N} \) = 2 dualities exploiting their recently discovered connection to the duality relations for 2d free field CFT correlators. Most of the dualities involve, as the main building block, a quiver theory with monopole superpotential which enjoys various interesting properties such as being self-dual and reducing, in a suitable real mass deformation, to the familiar T [SU(N )] theory. In particular we propose a duality for the U(N) theory with one adjoint and k + 1 fundamental flavors. By iterating some basic dualities we can bring the theory to a stable form which, in turns, allows us to find a dual frame where the rank of the original theory appears as a parameter.


Duality in Gauge Field Theories Supersymmetry and Duality Field Theories in Lower Dimensions Supersymmetric Gauge Theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    S. Pasquetti and M. Sacchi, From 3d dualities to 2d free field correlators and back, JHEP11 (2019) 081 [arXiv:1903.10817] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    S. Benvenuti, A tale of exceptional 3d dualities, JHEP03 (2019) 125 [arXiv:1809.03925] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    V. Pestun et al., Localization techniques in quantum field theories, J. Phys.A 50 (2017) 440301 [arXiv:1608.02952] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  4. [4]
    M. Goulian and M. Li, Correlation functions in Liouville theory, Phys. Rev. Lett.66 (1991) 2051 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    V.A. Fateev and A.V. Litvinov, Multipoint correlation functions in Liouville field theory and minimal Liouville gravity, Theor. Math. Phys.154 (2008) 454 [arXiv:0707.1664] [INSPIRE].CrossRefGoogle Scholar
  6. [6]
    F. Benini, S. Benvenuti and S. Pasquetti, SUSY monopole potentials in 2 + 1 dimensions, JHEP08 (2017) 086 [arXiv:1703.08460] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    O. Aharony, IR duality in d = 3 N = 2 supersymmetric USp(2N c) and U(N c) gauge theories, Phys. Lett.B 404 (1997) 71 [hep-th/9703215] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    F. Benini, S. Benvenuti and Y. Tachikawa, Webs of five-branes and N = 2 superconformal field theories, JHEP09 (2009) 052 [arXiv:0906.0359] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    M. Aganagic, N. Haouzi, C. Kozcaz and S. Shakirov, Gauge/Liouville Triality, arXiv:1309.1687 [INSPIRE].
  10. [10]
    M. Aganagic, N. Haouzi and S. Shakirov, A n-Triality, arXiv:1403.3657 [INSPIRE].
  11. [11]
    V.A. Fateev and A.V. Litvinov, Correlation functions in conformal Toda field theory. I., JHEP11 (2007) 002 [arXiv:0709.3806] [INSPIRE].
  12. [12]
    V.A. Fateev and A.V. Litvinov, Correlation functions in conformal Toda field theory II, JHEP01 (2009) 033 [arXiv:0810.3020] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    S. Benvenuti and S. Pasquetti, 3d \( \mathcal{N} \) = 2 mirror symmetry, pq-webs and monopole superpotentials, JHEP08 (2016) 136 [arXiv:1605.02675] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    D. Gaiotto and E. Witten, S-duality of Boundary Conditions In N = 4 Super Yang-Mills Theory, Adv. Theor. Math. Phys.13 (2009) 721 [arXiv:0807.3720] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    A. Nedelin, S. Pasquetti and Y. Zenkevich, T[SU(N )] duality webs: mirror symmetry, spectral duality and gauge/CFT correspondences, JHEP02 (2019) 176 [arXiv:1712.08140] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    F. Aprile, S. Pasquetti and Y. Zenkevich, Flipping the head of T [SU(N )]: mirror symmetry, spectral duality and monopoles, JHEP04 (2019) 138 [arXiv:1812.08142] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. Giacomelli, Dualities for adjoint SQCD in three dimensions and emergent symmetries, JHEP03 (2019) 144 [arXiv:1901.09947] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    C. Hwang, S. Pasquetti and M. Sacchi, 3d dualities from Toda free field correlators, in progress.Google Scholar
  19. [19]
    F. Benini, Y. Tachikawa and D. Xie, Mirrors of 3d Sicilian theories, JHEP09 (2010) 063 [arXiv:1007.0992] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    D. Gaiotto, N = 2 dualities, JHEP08 (2012) 034 [arXiv:0904.2715] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    Y. Terashima and M. Yamazaki, SL(2, ℝ) Chern-Simons, Liouville and Gauge Theory on Duality Walls, JHEP08 (2011) 135 [arXiv:1103.5748] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    D. Gang, N. Kim, M. Romo and M. Yamazaki, Taming supersymmetric defects in 3d-3d correspondence, J. Phys.A 49 (2016) 30LT02 [arXiv:1510.03884] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  23. [23]
    D. Gang, N. Kim, M. Romo and M. Yamazaki, Aspects of Defects in 3d-3d Correspondence, JHEP10 (2016) 062 [arXiv:1510.05011] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    B. Assel and A. Tomasiello, Holographic duals of 3d S-fold CFTs, JHEP06 (2018) 019 [arXiv:1804.06419] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    D. Gang and M. Yamazaki, Three-dimensional gauge theories with supersymmetry enhancement, Phys. Rev.D 98 (2018) 121701 [arXiv:1806.07714] [INSPIRE].ADSMathSciNetGoogle Scholar
  26. [26]
    I. Garozzo, G. Lo Monaco and N. Mekareeya, The moduli spaces of S-fold CFTs, JHEP01 (2019) 046 [arXiv:1810.12323] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    I. Garozzo, G. Lo Monaco and N. Mekareeya, Variations on S-fold CFTs, JHEP03 (2019) 171 [arXiv:1901.10493] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    I. Garozzo, G. Lo Monaco, N. Mekareeya and M. Sacchi, Supersymmetric Indices of 3d S-fold SCFTs, JHEP08 (2019) 008 [arXiv:1905.07183] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    J. Teschner and G. Vartanov, 6j symbols for the modular double, quantum hyperbolic geometry and supersymmetric gauge theories, Lett. Math. Phys.104 (2014) 527 [arXiv:1202.4698] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    B. Le Floch, S-duality wall of SQCD from Toda braiding, arXiv:1512.09128 [INSPIRE].
  31. [31]
    I. Garozzo, N. Mekareeya and M. Sacchi, Duality walls in the 4d \( \mathcal{N} \) = 2 SU(N) gauge theory with 2N flavours, JHEP11 (2019) 053 [arXiv:1909.02832] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    F. Aprile, C. Hwang, S. Pasquetti and M. Sacchi, Supersymmetric partition functions, orthogonal polynomials and kernel functions, in progress.Google Scholar
  33. [33]
    S. Pasquetti, S.S. Razamat, M. Sacchi and G. Zafrir, Rank Q E-string on a torus with flux, arXiv:1908.03278 [INSPIRE].
  34. [34]
    O. Aharony, S.S. Razamat, N. Seiberg and B. Willett, 3d dualities from 4d dualities, JHEP07 (2013) 149 [arXiv:1305.3924] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    O. Aharony, S.S. Razamat, N. Seiberg and B. Willett, 3d dualities from 4d dualities for orthogonal groups, JHEP08 (2013) 099 [arXiv:1307.0511] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    E.M. Rains, Multivariate Quadratic Transformations and the Interpolation Kernel, SIGMA14 (2018) 019 [arXiv:1408.0305].MathSciNetzbMATHGoogle Scholar
  37. [37]
    D.L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, JHEP05 (2012) 159 [arXiv:1012.3210] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    N. Hama, K. Hosomichi and S. Lee, Notes on SUSY Gauge Theories on Three-Sphere, JHEP03 (2011) 127 [arXiv:1012.3512] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    N. Hama, K. Hosomichi and S. Lee, SUSY Gauge Theories on Squashed Three-Spheres, JHEP05 (2011) 014 [arXiv:1102.4716] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    S. Cremonesi, A. Hanany and A. Zaffaroni, Monopole operators and Hilbert series of Coulomb branches of 3d \( \mathcal{N} \) = 4 gauge theories, JHEP01 (2014) 005 [arXiv:1309.2657] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    S. Benvenuti and S. Giacomelli, Supersymmetric gauge theories with decoupled operators and chiral ring stability, Phys. Rev. Lett.119 (2017) 251601 [arXiv:1706.02225] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    S. Benvenuti and S. Giacomelli, Abelianization and sequential confinement in 2 + 1 dimensions, JHEP10 (2017) 173 [arXiv:1706.04949] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    L.F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa and H. Verlinde, Loop and surface operators in N = 2 gauge theory and Liouville modular geometry, JHEP01 (2010) 113 [arXiv:0909.0945] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    N. Drukker, J. Gomis, T. Okuda and J. Teschner, Gauge Theory Loop Operators and Liouville Theory, JHEP02 (2010) 057 [arXiv:0909.1105] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    C. Kozcaz, S. Pasquetti and N. Wyllard, A & B model approaches to surface operators and Toda theories, JHEP08 (2010) 042 [arXiv:1004.2025] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    A. Kapustin, B. Willett and I. Yaakov, Nonperturbative Tests of Three-Dimensional Dualities, JHEP10 (2010) 013 [arXiv:1003.5694] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    A.Y. Volkov, Noncommutative hypergeometry, Commun. Math. Phys.258 (2005) 257 [math/0312084] [INSPIRE].
  48. [48]
    Y. Imamura and S. Yokoyama, Index for three dimensional superconformal field theories with general R-charge assignments, JHEP04 (2011) 007 [arXiv:1101.0557] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    A. Kapustin and B. Willett, Generalized Superconformal Index for Three Dimensional Field Theories, arXiv:1106.2484 [INSPIRE].

Copyright information

© The Author(s) 2020

Authors and Affiliations

  1. 1.Dipartimento di FisicaUniversità di Milano-Bicocca & INFNMilanoItaly

Personalised recommendations